首页> 外文期刊>Signal processing >Synthesis of multivariate stationary series with prescribed marginal distributions and covariance using circulant matrix embedding
【24h】

Synthesis of multivariate stationary series with prescribed marginal distributions and covariance using circulant matrix embedding

机译:使用循环矩阵嵌入法合成具有规定边际分布和协方差的多元平稳序列

获取原文
获取原文并翻译 | 示例

摘要

The problem of synthesizing multivariate stationary series y[n] = (Y_1[n],...,y_p[n])~r, n ∈ Z, with prescribed non-Gaussian marginal distributions, and a targeted covariance structure, is addressed. The focus is on constructions based on a memoryless transformation y_p[n]=f_p(X_p[n]) of a multivariate stationary Gaussian series X[n]=(X,[n],...X_p[n])~Τ'. The mapping between the targeted covariance and that of the Gaussian series is expressed via Hermite expansions. The various choices of the transforms f_p for a prescribed marginal distribution are discussed in a comprehensive manner. The interplay between the targeted marginal distributions, the choice of the transforms f_p, and on the resulting reachability of the targeted covariance, is discussed theoretically and illustrated on examples. Also, an original practical procedure warranting positive definiteness for the transformed covariance at the price of approximating the targeted covariance is proposed, based on a simple and natural modification of the popular circulant matrix embedding technique. The applications of the proposed methodology are also discussed in the context of network traffic modeling. Matlab codes implementing the proposed synthesis procedure are publicly available at http://www.hermir.org.
机译:解决了用规定的非高斯边际分布和目标协方差结构合成多元平稳序列y [n] =(Y_1 [n],...,y_p [n])〜r,n∈Z的问题。重点是基于多元平稳高斯序列X [n] =(X,[n],... X_p [n])〜T的无记忆变换y_p [n] = f_p(X_p [n])的构造'。目标协方差与高斯序列的协方差之间的映射通过Hermite展开表示。针对预定的边际分布,对变换f_p的各种选择进行了全面讨论。理论上讨论了目标边际分布之间的相互作用,变换f_p的选择以及目标协方差的最终可达性,并在示例中进行了说明。此外,基于对流行的循环矩阵嵌入技术的简单自然的修改,提出了一种原始的实用程序,该程序可保证以逼近目标协方差为代价对变换协方差进行正定性。还在网络流量建模的上下文中讨论了所提出方法的应用。实现建议的合成过程的Matlab代码可从http://www.hermir.org上公开获得。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号