首页> 外文期刊>Signal processing >A fast efficient power allocation algorithm for target localization in cognitive distributed multiple radar systems
【24h】

A fast efficient power allocation algorithm for target localization in cognitive distributed multiple radar systems

机译:认知分布式多雷达系统中用于目标定位的快速高效功率分配算法

获取原文
获取原文并翻译 | 示例

摘要

It is well-known that the power allocation can enhance the power utilization of the distributed radar systems. We first analyze two interesting non-increasing properties of Cramer-Rao low bound (CRLB) for target location via distributed multiple radar systems. On the basis of the classical power allocation methods, this paper proposes a fast efficient power allocation algorithm applied to cognitive distributed multiple radar systems, which depends greatly on an alternating global search algorithm(AGSA). In this paper, our aim is directly to minimize the non-convex CRLB of target location estimation. The convergence of the proposed algorithm is theoretically analyzed by LaSalle invariance principle. We analyze the computational complexity of the two closely-related algorithms. The famous Pareto optimal set associated with power allocation is obtained by the proposed algorithm, and it can indirectly derive the solution to problem for minimizing total power budget. Experimental results demonstrate that our algorithm has quick convergence and good performance.
机译:众所周知,功率分配可以提高分布式雷达系统的功率利用率。我们首先分析了通过分布式多雷达系统对目标位置进行的克莱默-拉奥低界(CRLB)的两个有趣的非递增性质。在经典功率分配方法的基础上,提出了一种适用于认知分布式多雷达系统的快速高效功率分配算法,该算法在很大程度上依赖于交替全局搜索算法(AGSA)。在本文中,我们的目标是直接最小化目标位置估计的非凸CRLB。从理论上分析了该算法的收敛性。我们分析了两个紧密相关的算法的计算复杂性。通过该算法获得了著名的与功率分配相关的帕累托最优集,它可以间接导出最小化总功率预算的问题解决方案。实验结果表明,该算法收敛速度快,性能良好。

著录项

  • 来源
    《Signal processing》 |2016年第10期|100-116|共17页
  • 作者单位

    National Lab of Radar Signal Processing, Xidian University and Collaborative innovation center of information sensing and understanding at Xidian University, Xi'an, 710071, China;

    National Lab of Radar Signal Processing, Xidian University and Collaborative innovation center of information sensing and understanding at Xidian University, Xi'an, 710071, China,Department of Electrical and Computer Engineering, Duke University, Durcham, NC 27708, USA;

    National Lab of Radar Signal Processing, Xidian University and Collaborative innovation center of information sensing and understanding at Xidian University, Xi'an, 710071, China;

    National Lab of Radar Signal Processing, Xidian University and Collaborative innovation center of information sensing and understanding at Xidian University, Xi'an, 710071, China;

    National Lab of Radar Signal Processing, Xidian University and Collaborative innovation center of information sensing and understanding at Xidian University, Xi'an, 710071, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Power allocation algorithm; Cognitive distributed multiple radar systems; Cramer-Rao low lound; Pareto optimal set; Alternating global search algorithm; Domain decomposition methods;

    机译:功率分配算法;认知分布式多雷达系统;Cramer-Rao低矮的狮子;帕累托最优集交替全局搜索算法;域分解方法;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号