首页> 外文期刊>Signal processing >Sparse reconstruction based on iterative TF domain filtering and Viterbi based IF estimation algorithm
【24h】

Sparse reconstruction based on iterative TF domain filtering and Viterbi based IF estimation algorithm

机译:基于迭代TF域滤波和基于Viterbi的IF估计算法的稀疏重构

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a solution to the problem of reconstructing sparsely sampled signals using time-frequency (TF) filtering. The proposed method employs a modified Viterbi algorithm and adaptive directional TF distributions (ADTFD) for the accurate estimation of the instantaneous frequency (IF) estimation of sparsely sampled multi-component signals from a given signal. Using the IF information, TF filtering is performed to separate the signal components. This TF filtering operation also fills the gaps caused by missing samples. The separated components are then added up, and known values are re-inserted to obtain a reconstructed signal. The steps above involving IF estimation, TF filtering, and re-insertion of known values are again applied with the reconstructed signal as an input signal. This algorithm is iterated until the difference between the signal energy in two successive iterations falls below a certain threshold. Experimental results indicate the superiority of the proposed method. The code for reproducing the results can be accessed from https://github.com/mokhtarmohammadi/Sparse-Reconstruction. (C) 2019 Elsevier B.V. All rights reserved.
机译:本文提出了一种使用时频(TF)滤波重建稀疏采样信号的解决方案。所提出的方法采用改进的Viterbi算法和自适应方向TF分布(ADTFD),可以从给定信号中准确估计稀疏采样的多分量信号的瞬时频率(IF)。使用IF信息,执行TF滤波以分离信号分量。此TF过滤操作还填补了丢失样本所造成的空白。然后将分离出的分量相加,并重新插入已知值以获得重构信号。上面的涉及IF估计,TF滤波和重新插入已知值的步骤将重新构造的信号作为输入信号再次应用。迭代该算法,直到两次连续迭代中的信号能量之间的差降至某个阈值以下。实验结果表明了该方法的优越性。可以从https://github.com/mokhtarmohammadi/Sparse-Reconstruction访问用于再现结果的代码。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号