首页> 外文期刊>Signal processing >Multidimensional harmonic retrieval based on Vandermonde tensor train
【24h】

Multidimensional harmonic retrieval based on Vandermonde tensor train

机译:基于范德蒙德张量列的多维谐波检索

获取原文
获取原文并翻译 | 示例

摘要

Multidimensional Harmonic Retrieval (MHR) is at the heart of important signal-based applications. The exploitation of the large number of available measurement diversities for data fusion increases inexorably the tensor order/dimensionality. The need to mitigate the "curse of dimensionality" in this case is crucial. To efficiently cope with this massive data processing problem, a new scheme called JIRAFE (Joint dimensionality Reduction And Factors rEtrieval) is proposed to estimate the parameters of interest in the MHR problem, namely, the MP angular-frequencies, of the associated P-order rank-M Canonical Polyadic Decomposition (CPD). Our methodology consists of two main steps. The first one breaks the high-order measurement tensor into a collection of graph-connected 3-order tensors, each following a 3-order CPD of rank-M, also called Tensor Train (TT)-cores. This result is based on a model property equivalence between the CPD and the Tensor Train decomposition (TTD) with coupled TT-cores. The second step makes use of a Vandermonde based rectified Alternating Least Squares (RecALS) algorithm to estimate the factors of interest, by enforcing the desired matrix structure. We show that our methodology has several advantages in terms of flexibility, robustness to noise, computational cost and automatic pairing of the parameters of interest with respect to the tensor order. (C) 2019 Elsevier B.V. All rights reserved.
机译:多维谐波检索(MHR)是基于信号的重要应用程序的核心。利用大量可用的测量多样性进行数据融合会极大地增加张量阶数/维数。在这种情况下,减轻“维数诅咒”的需求至关重要。为了有效地解决这一庞大的数据处理问题,提出了一种称为JIRAFE(联合降维和因子分解)的新方案,以估计MHR问题中感兴趣的参数,即关联的P阶的MP角频率。秩-M标准多形分解(CPD)。我们的方法包括两个主要步骤。第一个将高阶测量张量分解为一组图形连接的3阶张量,每个张量遵循等级M的3阶CPD,也称为Tensor Train(TT)核心。此结果基于CPD和耦合TT核心的Tensor Train分解(TTD)之间的模型属性等效。第二步利用基于Vandermonde的整流交替最小二乘(RecALS)算法,通过强制执行所需的矩阵结构来估算感兴趣的因子。我们表明,我们的方法论在灵活性,抗噪声能力,计算成本以及与张量阶次相关的参数自动配对方面具有多个优势。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号