首页> 外文期刊>Signal processing >Foreground detection based on co-occurrence background model with hypothesis on degradation modification in dynamic scenes
【24h】

Foreground detection based on co-occurrence background model with hypothesis on degradation modification in dynamic scenes

机译:基于共现背景模型的前景检测以及动态场景降级修正假设

获取原文
获取原文并翻译 | 示例

摘要

This work presents a Hypothesis on Degradation Modification (HoD) based on Co-occurrence Pixel-Block Pairs (CPB, which is proposed in our previous work) to further resist background changes for foreground detection, such as illumination changes and background motion. HoD provides CPB with a model update strategy that can be used for a long time. While further improving the robustness of CPB, it also stabilizes the efficiency of CPB over time. A key contribution of this work is it offers a robust background subtraction for foreground detection in dynamic scenes. The observation is robust to illumination changes and background motion and demonstrates the ability of HoD. Experimental results obtained from the datasets under different challenges of PETS 2001, AIST-Indoor, SBMnet and CDW-2012 databases prove that our algorithm has a good effectiveness for foreground detection. (C) 2019 Elsevier B.V. All rights reserved.
机译:这项工作提出了基于共现像素块对(CPB,在我们先前的工作中提出)的降级修改假说(HoD),以进一步抵御用于前景检测的背景变化,例如照明变化和背景运动。 HoD为CPB提供了可以长期使用的模型更新策略。在进一步提高CPB的鲁棒性的同时,还可以稳定CPB的效率。这项工作的关键贡献在于它为动态场景中的前景检测提供了可靠的背景减法。该观察对照明变化和背景运动具有鲁棒性,并证明了HoD的能力。从PETS 2001,AIST-Indoor,SBMnet和CDW-2012数据库的不同挑战下获得的数据集的实验结果证明,我们的算法对前景检测具有良好的效果。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号