首页> 外文期刊>Signal processing >Acoustic source tracking based on adaptive distributed particle filter in distributed microphone networks
【24h】

Acoustic source tracking based on adaptive distributed particle filter in distributed microphone networks

机译:分布式麦克风网络中基于自适应分布式粒子滤波的声源跟踪

获取原文
获取原文并翻译 | 示例

摘要

In this paper, an adaptive distributed particle filter (ADPF) is proposed for single acoustic source tracking in distributed microphone networks (DMNs). To deal with spurious effects due to the reverberation and noise, a modified multiple-hypothesis model is first investigated by exploiting the generalized cross correlation (GCC) function. Based on this model, the time-delay of arrival (TDOA) selection is performed for constituting the local observation. Then the acoustic source tracking is formulated as a Bayesian filtering problem under the assumption on the Langevin dynamic model of the source motion. Next, an adaptive distributed particle filter (ADPF) is presented to solve the Bayesian filtering problem for distributed acoustic source tracking. To improve the tracking performance, in the proposed ADPF, an adaptive and distributed computation method of the optimal proposal function is designed based on the Gaussian approximation, implemented by utilizing a Markov Chain Monte Carlo (MCMC) sampler and a consensus filter. The main advantage of the proposed acoustic source tracking method is the combination of the strength of the modified TDOA multiple-hypothesis model and the ADPF. Both simulation and real-world recording experiment results show that, the proposed ADPF has a relatively good tracking performance under different SNR conditions and reverberation environments. (C) 2018 Elsevier B.V. All rights reserved.
机译:在本文中,针对分布式麦克风网络(DMN)中的单个声源跟踪,提出了一种自适应分布式粒子滤波器(ADPF)。为了处理由于混响和噪声引起的寄生效应,首先通过利用广义互相关(GCC)函数研究了改进的多重假设模型。基于此模型,执行到达时间延迟(TDOA)选择以构成本地观测。然后,在源运动的兰格文动力学模型的假设下,将声源跟踪公式化为贝叶斯滤波问题。接下来,提出了一种自适应分布式粒子滤波器(ADPF)来解决贝叶斯滤波问题,用于分布式声源跟踪。为了提高跟踪性能,在提出的ADPF中,基于高斯近似,设计了一种自适应提议分布式最优提议函数的计算方法,该方法利用马尔可夫链蒙特卡洛(MCMC)采样器和共识滤波器实现。所提出的声源跟踪方法的主要优点是将改进的TDOA多假设模型的强度与ADPF相结合。仿真和实际录音实验结果均表明,所提出的ADPF在不同的信噪比条件和混响环境下具有较好的跟踪性能。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号