首页> 外文期刊>Signal Processing, IET >Relationship between the robust statistics theory and sparse compressive sensed signals reconstruction
【24h】

Relationship between the robust statistics theory and sparse compressive sensed signals reconstruction

机译:鲁棒统计理论与稀疏压缩感知信号重构之间的关系

获取原文
获取原文并翻译 | 示例

摘要

An analysis of robust estimation theory in the light of sparse signals reconstruction is considered. This approach is motivated by compressive sensing (CS) concept which aims to recover a complete signal from its randomly chosen, small set of samples. In order to recover missing samples, the authors define a new reconstruction algorithm. It is based on the property that the sum of generalised deviations of estimation errors, obtained from robust transform formulations, has different behaviour at signal and non-signal frequencies. Additionally, this algorithm establishes a connection between the robust estimation theory and CS. The effectiveness of the proposed approach is demonstrated on examples.
机译:考虑了基于稀疏信号重构的鲁棒估计理论分析。此方法受压缩感测(CS)概念的启发,该概念旨在从其随机选择的少量样本中恢复完整的信号。为了恢复丢失的样本,作者定义了一种新的重建算法。基于该属性,从鲁棒变换公式获得的估计误差的广义偏差之和在信号和非信号频率下具有不同的行为。另外,该算法在鲁棒估计理论和CS之间建立了联系。实例证明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号