首页> 外文期刊>Signal Processing, IET >Optimisation of multiple feature stream weights for distributed speech processing in mobile environments
【24h】

Optimisation of multiple feature stream weights for distributed speech processing in mobile environments

机译:移动环境中分布式语音处理的多个特征流权重的优化

获取原文
获取原文并翻译 | 示例

摘要

Mobile environments are highly influenced by ambient noise that can cause a significant deterioration in speech recognition performance. In this study, a new framework integrating a noise-robust frontend (FE) in distributed speech recognition (DSR) is presented. Using the Aurora-2 speech database, the authors evaluate the impact of the proposed multidimensional acoustical analysis on the performance of the Mel-frequency-based European Telecommunications Standards Institute-advanced FE (AFE) combined with the Mel-line spectral frequencies (MLSFs) robust features for highly noisy speech. The stream weights of the resulting multi-stream hidden Markov models are optimised automatically by deploying a novel approach based on a discriminative model combination. Finally, these features are effectively transformed and reduced using the Karhunen-Loève transform. The proposed MLSF-based FE (MLSF-FE) is shown to exhibit a reduction in the relative error rate. Moreover, the proposed FE provides comparable recognition performance to the current DSR-AFE available in global system of mobile communications.
机译:移动环境受到环境噪声的极大影响,环境噪声会导致语音识别性能显着下降。在这项研究中,提出了一种在分布式语音识别(DSR)中集成了抗噪前端(FE)的新框架。使用Aurora-2语音数据库,作者评估了所提出的多维声学分析对基于梅尔频率的欧洲电信标准协会先进的FE(AFE)和梅尔线频谱频率(MLSF)的性能的影响。强大的功能可实现高噪声语音。通过采用基于判别模型组合的新颖方法,可以自动优化生成的多流隐藏Markov模型的流权重。最后,使用Karhunen-Loeve变换可以有效地变换和减少这些特征。所提出的基于MLSF的有限元(MLSF-FE)已显示出相对误差率的降低。而且,所提出的FE提供与全球移动通信系统中可用的当前DSR-AFE相当的识别性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号