首页> 外文期刊>Signal Processing, IET >Kalman particle filtering algorithm for symmetric alpha-stable distribution signals with application to high frequency time difference of arrival geolocation
【24h】

Kalman particle filtering algorithm for symmetric alpha-stable distribution signals with application to high frequency time difference of arrival geolocation

机译:对称α稳定分布信号的卡尔曼粒子滤波算法在到达地理位置高频时差中的应用

获取原文
获取原文并翻译 | 示例

摘要

In this study, a non-linear filtering algorithm for state estimation with symmetric alpha-stable (SαS) noise is presented. The dynamic system model investigated here can be described by a linear state-space equation and a non-linear observation equation. The contribution of this study can be summarised as follows. First, particle filtering approach is employed for coarse estimation of the unknown parameters and then Kalman filter is performed to achieve better estimation. Second, SαS noise is considered as the additive disturbance in the observed signal and Gaussian approximation is used to compute the characteristics. Third, the calculation complexity is analysed according to the proposed algorithm. The proposed method is compared with the standard particle filter, extended Kalman filter and unscented Kalman filter for static parameter estimation of a periodic signal. As a practical application, the proposed method is used in high frequency source localisation based on time difference of arrival measurements.
机译:在这项研究中,提出了一种用于状态估计的对称α-稳定(SαS)噪声的非线性滤波算法。这里研究的动态系统模型可以用线性状态空间方程和非线性观测方程来描述。这项研究的贡献可以总结如下。首先,采用粒子滤波方法对未知参数进行粗略估计,然后执行卡尔曼滤波以获得更好的估计。其次,将SαS噪声视为观测信号中的加性扰动,并使用高斯近似来计算特性。第三,根据提出的算法分析计算复杂度。将该方法与标准粒子滤波器,扩展卡尔曼滤波器和无味卡尔曼滤波器进行了比较,以估计周期信号的静态参数。在实际应用中,该方法用于基于到达测量时间差的高频源定位。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号