首页> 外文期刊>Services Computing, IEEE Transactions on >An Approximation Algorithm for Sharing-Aware Virtual Machine Revenue Maximization
【24h】

An Approximation Algorithm for Sharing-Aware Virtual Machine Revenue Maximization

机译:共享感知虚拟机收入最大化的近似算法

获取原文
获取原文并翻译 | 示例

摘要

Cloud providers face the challenge of efficiently managing their infrastructure through minimizing resource consumption while allocating service requests such that their revenue is maximized. Solutions addressing this challenge should consider the sharing of memory pages among virtual machines (VMs) and the available capacity of each type of requested resources. We provide such solution by designing a greedy approximation algorithm for solving the sharing-aware virtual machine revenue maximization (SAVMRM) problem. The SAVMRM problem requires determining the set of VMs that can be instantiated on a given server such that the revenue derived from hosting the VMs is maximized. In addition, we model the SAVMRM problem as a multilinear binary program and optimally solve it, while accounting for page sharing and multiple resource constraints. We determine and analyze the approximability properties of our proposed greedy algorithm and evaluate it by performing extensive experiments using Google cluster workload traces. The experimental results show that under various scenarios, our proposed algorithm generates higher revenue than other VM allocation algorithms while achieving significant reduction of allocated memory.
机译:云提供商通过最大限度地降低资源消耗,在分配服务请求时,面临有效管理基础设施的挑战,以使其收入最大化。解决此挑战的解决方案应考虑虚拟机(VM)之间的内存页面和每种类型所请求资源的可用容量。我们通过设计用于解决共享感知虚拟机收入最大化(SAVMRM)问题的贪婪近似算法提供此类解决方案。 SAVMRM问题需要确定可以在给定服务器上实例化的VM集,从而最大化从托管VMS的收入。此外,我们将SAVMRM问题模拟为多线性二进制程序,并最佳地解决它,同时考虑页面共享和多个资源约束。我们确定并分析我们提出的贪婪算法的近似性属性,并通过使用Google群集工作负载跟踪进行广泛的实验来评估它。实验结果表明,在各种场景下,我们所提出的算法在达到分配内存的显着减少的同时产生比其他VM分配算法更高的收入。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号