首页> 外文期刊>Sequential analysis >Sequential tests of multiple hypotheses controlling false discovery and nondiscovery rates
【24h】

Sequential tests of multiple hypotheses controlling false discovery and nondiscovery rates

机译:控制虚假发现和非发现率的多个假设的顺序测试

获取原文
获取原文并翻译 | 示例

摘要

We propose a general and flexible procedure for testing multiple hypotheses about sequential (or streaming) data that simultaneously controls both the false discovery rate (FDR) and false nondiscovery rate (FNR) under minimal assumptions about the data streams, which may differ in distribution and dimension and be dependent. All that is needed is a test statistic for each data stream that controls its conventional type I and II error probabilities, and no information or assumptions are required about the joint distribution of the statistics or data streams. The procedure can be used with sequential, group sequential, truncated, or other sampling schemes. The procedure is a natural extension of Benjamini and Hochberg's (1995) widely used fixed sample size procedure to the domain of sequential data, with the added benefit of simultaneous FDR and FNR control that sequential sampling affords. We prove the procedure's error control and give some tips for implementation in commonly encountered testing situations.
机译:我们提出了一种关于测试多个假设关于关于顺序(或流式)数据的多个假设的程序,该数据在关于数据流的最小假设下同时控制错误发现率(FDR)和假非发现率(FNR),这可能在分布和维度并依赖。所需要的只是控制其传统I和II错误概率的每个数据流的测试统计数据,并且不需要对统计数据流的联合分布来分布信息或假设。该过程可以与顺序,组顺序,截断或其他采样方案一起使用。该程序是Benjamini和Hochberg(1995)的自然延伸,广泛使用的固定样本大小程序到顺序数据的域,同时FDR和FNR控制的额外效益和顺序采样提供。我们证明了程序的错误控制,并在通常遇到的测试情况下提供一些提示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号