首页> 外文期刊>Sequential analysis >Confidence intervals and point estimators for a normal mean under purely sequential strategies involving Gini's mean difference and mean absolute deviation
【24h】

Confidence intervals and point estimators for a normal mean under purely sequential strategies involving Gini's mean difference and mean absolute deviation

机译:在涉及吉尼均值差和均值绝对偏差的纯粹顺序策略下的正常均值的置信区间和点估计量

获取原文
获取原文并翻译 | 示例

摘要

We have developed purely sequential methodologies for problems associated with both fixed-width confidence interval estimation and minimum risk point estimation for the normal mean mu when the variance sigma(2) is assumed unknown. New stopping rules are constructed by replacing the sample variance with appropriate multiples of Gini's mean difference (GMD) and mean absolute deviation (MAD) in defining the conditions for boundary crossing. A number of asymptotic first-order consistency, efficiency, and risk efficiency properties associated with these new estimation strategies have been investigated. These are followed by summaries obtained from extensive sets of simulations by drawing samples from (i) normal universes or (ii) mixture-normal universes where samples may be reasonably treated as observations from a normal universe in a large majority of simulations. We also include illustrations using sales data and horticulture data. Overall, we empirically feel confident that our newly developed GMD-based or MAD-based methodologies are more robust for practical purposes when we compare them with the sample variance-based methodologies respectively, especially when up to 20% suspect outliers may be expected.
机译:当方差sigma(2)被假定为未知时,我们已经开发出了与固定宽度置信区间估计和正常均值mu的最小风险点估计相关的问题的纯顺序方法。通过在定义边界穿越条件时用吉尼平均差(GMD)和平均绝对偏差(MAD)的适当倍数替换样本方差来构造新的停止规则。已经研究了与这些新估计策略相关的许多渐近一阶一致性,效率和风险效率属性。接下来是通过从(i)正常宇宙或(ii)混合-正常宇宙中提取样本而从大量模拟中获得的摘要,在大多数模拟中,可以合理地将样本视为来自正常宇宙的观察值。我们还包括使用销售数据和园艺数据的插图。总的来说,当我们分别将它们与基于样本方差的方法进行比较时,特别是在可能有多达20%的可疑离群值的情况下,我们有经验地相信我们新开发的基于GMD或基于MAD的方法在实际应用中更加健壮。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号