首页> 外文期刊>Semiconductor science and technology >Spin-orbit coupling in Ga_xIn_(1-x)As/InP two-dimensional electron gases and quantum wire structures
【24h】

Spin-orbit coupling in Ga_xIn_(1-x)As/InP two-dimensional electron gases and quantum wire structures

机译:Ga_xIn_(1-x)As / InP二维电子气和量子线结构中的自旋轨道耦合

获取原文
获取原文并翻译 | 示例
       

摘要

In this work, the effect of spin-orbit coupling in two-dimensional electron gases and quantum wire structures is discussed. First, the theoretical framework is introduced including spin-orbit coupling due to structural inversion asymmetry, the so-called Rashba effect, as well as the Dresselhaus term. The latter originates from bulk inversion asymmetry. With regard to wire structures, special attention is devoted to the influence of the particular shape of the confinement potential on the energy spectrum. As a model system Ga_xIn_(1-x)As/InP heterostructures are chosen, where different thicknesses of the strained Ga_(0.23)In_(0.77) As channel layer were introduced, in order to adjust the strength of the spin-orbit coupling. Hall bar structures as well as sets of identical wires with different widths were prepared. In two-dimensional electron gases, the strength of the spin-orbit coupling was extracted by analyzing the characteristic beating pattern in the Shubnikov-de Haas oscillations. In addition, the weak antilocalization was utilized to obtain information on the spin-orbit coupling. It is shown that for decreasing width of the strained layer the Rashba effect, which dominates in our layer systems, is increased. This behavior is attributed to the larger interface contribution if the electron wavefunction is strongly confined. The measurements on the wire structures revealed a transition from weak antilocalization to weak localization if the wire width is decreased. This effect is attributed to an enhanced spin diffusion length for strongly confined systems.
机译:在这项工作中,讨论了自旋轨道耦合在二维电子气和量子线结构中的作用。首先,介绍了理论框架,其中包括由于结构反转不对称引起的自旋轨道耦合,所谓的拉什巴效应以及Dresselhaus项。后者源于体反演不对称。关于导线结构,特别注意约束电位的特定形状对能谱的影响。作为模型系统,选择Ga_xIn_(1-x)As / InP异质结构,其中引入了不同厚度的应变Ga_(0.23)In_(0.77)As沟道层,以调节自旋轨道耦合的强度。准备了霍尔杆结构以及不同宽度的相同电线组。在二维电子气中,通过分析Shubnikov-de Haas振荡中的特征跳动模式来提取自旋轨道耦合的强度。另外,利用弱的反定位来获得自旋轨道耦合的信息。结果表明,为减小应变层的宽度,增加了在我们的层系统中占主导地位的Rashba效应。如果电子波函数受到严格限制,则此行为归因于较大的界面贡献。导线结构的测量结果表明,如果导线宽度减小,则从弱抗局部性过渡到弱局部性。该效果归因于强约束系统的自旋扩散长度增加。

著录项

  • 来源
    《Semiconductor science and technology》 |2009年第6期|4-14|共11页
  • 作者单位

    Institute of Bio- and Nanosystems IBN-1, VISel-Virtual Institute of Spin Electronics,JARA Juelich-Aachen Research Alliance, Research Centre Juelich GmbH, 52425 Juelich, Germany;

    Institute of Bio- and Nanosystems IBN-1, VISel-Virtual Institute of Spin Electronics,JARA Juelich-Aachen Research Alliance, Research Centre Juelich GmbH, 52425 Juelich, Germany;

    Institute of Solid State Research (IFF), JARA Juelich-Aachen Research Alliance, Research Centre Juelich GmbH, 52425 Juelich, Germany;

    Institute of Bio- and Nanosystems IBN-1, VISel-Virtual Institute of Spin Electronics,JARA Juelich-Aachen Research Alliance, Research Centre Juelich GmbH, 52425 Juelich, Germany;

    Institute of Bio- and Nanosystems IBN-1, VISel-Virtual Institute of Spin Electronics,JARA Juelich-Aachen Research Alliance, Research Centre Juelich GmbH, 52425 Juelich, Germany;

    Institute of Bio- and Nanosystems IBN-1, VISel-Virtual Institute of Spin Electronics,JARA Juelich-Aachen Research Alliance, Research Centre Juelich GmbH, 52425 Juelich, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 01:32:01

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号