首页> 外文期刊>Semiconductor science and technology >Sub-2 nm boron doping in silicon using novel ultra-thin SiO_2 film produced by sol-gel dip coating as a capping layer
【24h】

Sub-2 nm boron doping in silicon using novel ultra-thin SiO_2 film produced by sol-gel dip coating as a capping layer

机译:使用溶胶 - 凝胶浸涂制备的新型超薄SiO_2薄膜作为覆盖层,用溶胶 - 凝胶浸涂生产的新型超薄SiO_2薄膜掺杂硅掺杂

获取原文
获取原文并翻译 | 示例
           

摘要

Advancements in semiconductor electronics and sensor technologies demand a more robust doping approach and process to fabricate ultra-shallow doping with abrupt depth, particularly on complex structured surfaces. Molecular monolayer doping (MLD) is a potential approach, but is limited by the difficulty in depositing a high-quality SiO2 capping film without damaging the dopant molecular layer. In this work, a relative humidity condition during deposition of the film in the sol-gel dip-coating process is found to produce continuous, dense and stoichiometric ultra-thin SiO2 films of quality equivalent to that produced by complicated thermal oxidation/etching and sophisticated chemical vapor deposition and atomic layer deposition methods. Applying these ultra-thin SiO2 films as capping layers in the molecular MLD method, B doping in Si with sub-2 nm effective depth and sub-5 nm abrupt depth is achieved. Remarkably, around 82%-86% of doped B atoms in Si are found to be electrically active as estimated from sheet resistance measurements. The established sol-gel dip coating conditions to deposit ultra-thin SiO2 films are generic and can be extended to produce high-quality ultra-thin films of other metal oxide materials required for advanced technological applications.
机译:半导体电子和传感器技术的进步需求更强大的掺杂方法和工艺,以制造突然深度的超浅掺杂,特别是在复杂的结构表面上。分子单层掺杂(MLD)是潜在的方法,但是由于难以沉积高质量的SiO 2覆盖膜而不会损坏掺杂剂分子层的潜在方法。在这项工作中,发现在溶胶 - 凝胶浸涂过程中沉积薄膜期间的相对湿度条件,该薄膜产生连续,致密和化学计量的超薄SiO 2薄膜,其质量相当于通过复杂的热氧化/蚀刻和复杂产生的。化学气相沉积和原子层沉积方法。将这些超薄SiO 2薄膜应用于分子MLD方法中的封端层,B掺杂在具有子-2NM有效深度和亚5NM突然深度的Si中。值得注意的是,Si中约82%-86%的掺杂B原子被发现为电活性,如薄层电阻测量估计。储存超薄SiO 2薄膜的已建立的溶胶 - 凝胶浸涂条件是通用的,可以延伸以产生高质量的技术应用所需的其他金属氧化物材料的高质量超薄薄膜。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号