首页> 外文期刊>Selected Topics in Signal Processing, IEEE Journal of >Tensor-Based Receiver for Joint Channel, Data, and Phase-Noise Estimation in MIMO-OFDM Systems
【24h】

Tensor-Based Receiver for Joint Channel, Data, and Phase-Noise Estimation in MIMO-OFDM Systems

机译:用于联合通道,数据和MIMO-OFDM系统中的相位噪声估计的张量接收器

获取原文
获取原文并翻译 | 示例
           

摘要

Phase-noise is a system impairment caused by the mismatch between the oscillators at the transmitter and the receiver. In OFDM systems, this induces inter-carrier-interference (ICI) by rotating the transmitted symbols. Thus it can cause severe system performance degradation. To reduce its effects, the phase-noise must be estimated or compensated. In this work, we propose a two-stage tensor-based receiver for a joint channel, phase-noise (PN), and data estimation in MIMO-OFDM systems. In the first stage, we show that the received signal at the pilot subcarriers can be modeled as a third-order PARAFAC tensor. Based on this model, we propose two algorithms for channel and phase-noise estimation at the pilot subcarriers. The first algorithm, based on the BALS (Bilinear Alternating Least Squares), is an iterative algorithm that estimates the channel gains and the phase-noise impairments. The second is a closed-form algorithm based on the LS-KRF (Least Squares - Khatri-Rao Factorization) that estimates the channel gains and the phase-noise terms through multiple rank-one factorizations. Both algorithms achieve similar performance, but in terms of computational complexity, we show that the LS-KRF becomes more attractive than the BALS as the number of receive antennas is increased. The second stage consists of data estimation, for which we propose a ZF (Zero-Forcing) receiver that capitalizes on the PARATuck tensor structure of the received signal at the data subcarriers using the Selective Kronecker Product (SKP) operator. Our numerical simulations show that the proposed receiver achieves an improved performance compared to the state-of-art receivers in terms of symbol error rate (SER) and normalized mean square error (NMSE) of the estimated channel and phase-noise matrices.
机译:相位噪声是由发射器和接收器之间的振荡器之间的不匹配引起的系统损伤。在OFDM系统中,这通过旋转发送的符号来引导载波间干扰(ICI)。因此,它会导致严重的系统性能下降。为了减少其效果,必须估计或补偿相位噪声。在这项工作中,我们提出了一种用于联合通道,相位噪声(PN)和MIMO-OFDM系统中的数据估计的两级张量的接收器。在第一阶段,我们表明导频子载波处的接收信号可以被建模为三阶PARAFAC张量。基于该模型,我们提出了两种用于导频子载波的信道和相位噪声估计的算法。基于BALS(BILINEAR交流最小二乘)的第一算法是估计信道增益和相位噪声损伤的迭代算法。第二个是基于LS-KRF(最小二乘 - 哈特里-RAO分解)的闭合算法,该算法通过多个秩一构论估计信道增益和相位噪声术语。这两种算法都能实现类似的性能,而是在计算复杂性方面,当接收天线的数量增加时,LS-KRF比BALS更具吸引力。第二阶段由数据估计组成,我们提出了一种使用选择性克朗克产品(SKP)操作员在数据子载波上大写接收信号的PARATUC张量结构的ZF(零强制)接收器。我们的数值模拟表明,与估计信道和相位噪声矩阵的符号误差率(SER)和归一化均方误差(NMSE),所提出的接收器与最先进的接收器相比,实现了改进的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号