首页> 外文期刊>Scientific programming >Text Summarization Using FrameNet-Based Semantic Graph Model
【24h】

Text Summarization Using FrameNet-Based Semantic Graph Model

机译:使用基于FrameNet的语义图模型进行文本汇总

获取原文
获取原文并翻译 | 示例

摘要

Text summarization is to generate a condensed version of the original document. The major issues for text summarization are eliminating redundant information, identifying important difference among documents, and recovering the informative content. This paper proposes a Semantic Graph Model which exploits the semantic information of sentence using FSGM. FSGM treats sentences as vertexes while the semantic relationship as the edges. It uses FrameNet and word embedding to calculate the similarity of sentences. This method assigns weight to both sentence nodes and edges. After all, it proposes an improved method to rank these sentences, considering both internal and external information. The experimental results show that the applicability of the model to summarize text is feasible and effective.
机译:文本摘要将生成原始文档的精简版本。文本摘要的主要问题是消除冗余信息,识别文档之间的重要差异以及恢复信息量。本文提出了一种语义图模型,该模型利用FSGM利用句子的语义信息。 FSGM将句子视为顶点,而将语义关系视为边缘。它使用FrameNet和单词嵌入来计算句子的相似度。此方法将权重分配给句子节点和边缘。毕竟,它提出了一种改进的方法来考虑内部和外部信息对这些句子进行排名。实验结果表明,该模型适用于文本摘要是可行和有效的。

著录项

  • 来源
    《Scientific programming》 |2016年第2期|5130603.1-5130603.10|共10页
  • 作者单位

    Beijing Univ Posts & Telecommun, Sch Software Engn, Beijing 100876, Peoples R China|Beijing Univ Posts & Telecommun, Key Lab Trustworthy Distributed Comp & Serv, Beijing 100876, Peoples R China;

    Beijing Univ Posts & Telecommun, Sch Software Engn, Beijing 100876, Peoples R China|Beijing Univ Posts & Telecommun, Key Lab Trustworthy Distributed Comp & Serv, Beijing 100876, Peoples R China;

    Harvard Univ, Dept Stat, Cambridge, MA 02138 USA;

    Air Force Gen Hosp, Beijing, Peoples R China;

    Beijing Univ Posts & Telecommun, Sch Software Engn, Beijing 100876, Peoples R China|Beijing Univ Posts & Telecommun, Key Lab Trustworthy Distributed Comp & Serv, Beijing 100876, Peoples R China;

  • 收录信息 美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号