首页> 外文期刊>Scientific programming >Parallelizing Gene Expression Programming Algorithm in Enabling Large-Scale Classification
【24h】

Parallelizing Gene Expression Programming Algorithm in Enabling Large-Scale Classification

机译:支持大规模分类的并行基因表达编程算法

获取原文
获取原文并翻译 | 示例

摘要

As one of the most effective function mining algorithms, Gene Expression Programming (GEP) algorithm has been widely used in classification, pattern recognition, prediction, and other research fields. Based on the self-evolution, GEP is able to mine an optimal function for dealing with further complicated tasks. However, in big data researches, GEP encounters low efficiency issue due to its long time mining processes. To improve the efficiency of GEP in big data researches especially for processing large-scale classification tasks, this paper presents a parallelized GEP algorithm using Map Reduce computing model. The experimental results show that the presented algorithm is scalable and efficient for processing large-scale classification tasks.
机译:作为最有效的函数挖掘算法之一,基因表达编程(GEP)算法已广泛应用于分类,模式识别,预测和其他研究领域。基于自我进化,GEP能够挖掘最佳功能来处理进一步复杂的任务。然而,在大数据研究中,GEP由于其长时间的挖掘过程而遇到效率低下的问题。为了提高GEP在大数据研究中的效率,特别是在处理大规模分类任务时,提出了一种使用Map Reduce计算模型的并行GEP算法。实验结果表明,所提出的算法在处理大规模分类任务方面具有可扩展性和有效性。

著录项

  • 来源
    《Scientific programming》 |2017年第1期|5081526.1-5081526.10|共10页
  • 作者单位

    Sichuan Univ, Sch Elect Engn & Informat, Chengdu 610065, Peoples R China;

    Sichuan Univ, Sch Elect Engn & Informat, Chengdu 610065, Peoples R China;

    Sichuan Univ, Sch Elect Engn & Informat, Chengdu 610065, Peoples R China;

    Sichuan Univ, Sch Elect Engn & Informat, Chengdu 610065, Peoples R China;

  • 收录信息 美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号