首页> 外文期刊>Science of the total environment >Hydrologic control on redox and nitrogen dynamics in a peatland soil
【24h】

Hydrologic control on redox and nitrogen dynamics in a peatland soil

机译:泥炭地土壤氧化还原和氮动力学的水文控制

获取原文
获取原文并翻译 | 示例
       

摘要

Soils are a dominant source of nitrous oxide (N_2O), a potent greenhouse gas. However, the complexity of the drivers of N_2O production and emissions has hindered our ability to predict the magnitude and spatial dynamics of N_2O fluxes. Soil moisture can be considered a key driver because it influences oxygen (O_2) supply, which feeds back on N_2O sources (nitrification versus denitrification) and sinks (reduction to dinitrogen). Soil water content is directly linked to O_2 and redox potential, which regulate microbial metabolism and chemical transformations in the environment. Despite its importance, only a few laboratory studies have addressed the effects of hydrological transient dynamics on nitrogen (N) cycling in the vadose zone. To further investigate these aspects, we performed a long term experiment in a 1.5 m depth soil column supplemented by chamber experiments. With this experiment, we aimed to investigate how soil moisture dynamics influence redox sensitive N cycling in a peatland soil. As expected, increased soil moisture lowered O_2 concentrations and redox potential in the soil. The decline was more severe for prolonged saturated conditions than for short events and at deep than at the soil surface. Gaseous and dissolved N_2O, dissolved nitrate (NO_3-) and ammonium (NH_4~+) changed considerably along the soil column profile following trends in soil O_2 and redox potential. Hot spots of N_2O concentrations corresponded to high variability in soil O_2 in the upper and lower parts of the column. Results from chamber experiments confirmed high NO_3- reduction potential in soils, particularly from the bottom of the column. Under our experimental conditions, we identified a close coupling of soil O_2 and N_2O dynamics, both of which lagged behind soil moisture changes. These results highlight the relationship among soil hydrologic properties, redox potential and N cycling, and suggest that models working at a daily scale need to consider soil O_2 dynamics in addition to soil moisture dynamics to accurately predict patterns in N_2O fluxes.
机译:土壤是一氧化二氮(N_2O)的主要来源,一氧化二氮是一种有力的温室气体。但是,N_2O产生和排放驱动因素的复杂性阻碍了我们预测N_2O通量的大小和空间动态的能力。土壤水分可以被认为是主要的驱动因素,因为它会影响氧气(O_2)的供应,而氧气会以N_2O来源(硝化反硝化)和下沉(还原为二氮)的形式反馈。土壤含水量与O_2和氧化还原电位直接相关,它们调节环境中的微生物代谢和化学转化。尽管它很重要,但是只有很少的实验室研究解决了水文瞬态动力学对渗流带中氮(N)循环的影响。为了进一步研究这些方面,我们在1.5 m深度的土壤柱中进行了长期实验,并补充了试验室实验。通过该实验,我们旨在研究土壤水分动力学如何影响泥炭地土壤中对氧化还原敏感的氮循环。不出所料,增加的土壤水分降低了土壤中的O_2浓度和氧化还原电位。长期饱和条件下的下降比短期事件和深层土壤表面的下降更为严重。气态和溶解态N_2O,溶解态硝酸盐(NO_3-)和铵态氮(NH_4〜+)随土壤O_2和氧化还原势的变化而沿土壤柱剖面变化很大。 N_2O浓度的热点对应于柱上部和下部的土壤O_2的高度变异性。室实验的结果证实了土壤中NO_3-还原的潜力很高,尤其是在塔底。在我们的实验条件下,我们确定了土壤O_2和N_2O动力学的紧密耦合,二者都落后于土壤水分的变化。这些结果突显了土壤水文性质,氧化还原电势和氮循环之间的关系,并表明在日尺度上工作的模型除了需要考虑土壤水分动态以外,还需要考虑土壤O_2的动态,以准确预测N_2O通量的模式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号