首页> 外文期刊>Science of Computer Programming >A new decomposition-based method for detecting attractors in synchronous Boolean networks
【24h】

A new decomposition-based method for detecting attractors in synchronous Boolean networks

机译:基于分解的同步布尔网络吸引子检测新方法

获取原文
获取原文并翻译 | 示例

摘要

Boolean networks are a well-established formalism for modelling biological systems. An important aspect of analysing a Boolean network is to identify all its attractors. This becomes challenging for large Boolean networks due to the infamous state-space explosion problem. In this paper, we propose a new strongly connected component (SCC) based decomposition method for attractor detection in large synchronous Boolean networks and prove its correctness. Experimental results show that our proposed method is significantly better in terms of performance when compared to existing methods in the literature. (C) 2019 Elsevier B.V. All rights reserved.
机译:布尔网络是用于建立生物系统模型的公认的形式主义。分析布尔网络的一个重要方面是识别其所有吸引子。由于臭名昭著的状态空间爆炸问题,这对于大型布尔网络变得具有挑战性。本文提出了一种新的基于强连接分量分解的分解方法,用于大型同步布尔网络中的吸引子检测,并证明了其正确性。实验结果表明,与文献中的现有方法相比,我们提出的方法在性能上要好得多。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号