首页> 外文期刊>Pomiary Automatyka Kontrola >Correction of gas sensor dynamic errors by means of neural networks
【24h】

Correction of gas sensor dynamic errors by means of neural networks

机译:借助神经网络校正气体传感器动态误差

获取原文
获取原文并翻译 | 示例

摘要

The paper presents a method based on artificial neural network (ANN) technique applied for correction of dynamic error of gas concentration measuring transducer. Its response time is about 8 minutes. The results obtained in the research of this transducer were used for learning and testing ANN, which were implemented in the dynamic correction task. The described method allowed for significant reduction of the transducer's response time - the output signal was practically fixed after a time equal to one sampling period of output signal provided that the stimulus is a step function. In addition, the use of ANN allows reducing the impact of the transducer dynamic non-linearity on the correction effectiveness.
机译:提出了一种基于人工神经网络技术的气体浓度测量传感器动态误差校正方法。它的响应时间约为8分钟。该换能器研究中获得的结果用于学习和测试ANN,并在动态校正任务中实现。所描述的方法可以显着减少换能器的响应时间-如果激励是阶跃函数,则在经过等于输出信号一个采样周期的时间后,输出信号实际上是固定的。另外,使用ANN可以减少换能器动态非线性对校正效果的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号