首页> 外文期刊>Robotics and Computer-Integrated Manufacturing >Calculation of the robot trajectory for the optimum directional orientation of fibre placement in the manufacture of composite profile frames
【24h】

Calculation of the robot trajectory for the optimum directional orientation of fibre placement in the manufacture of composite profile frames

机译:计算复合材料型材框架中纤维铺放的最佳定向的机器人轨迹

获取原文
获取原文并翻译 | 示例
           

摘要

This article deals with theissue of calculating the trajectory of the end-effector of an industrial robot in the manufacture of composites. In the introduction to the article we describe the basic approaches used in the manufacture of composites. Robots are used to define the winding orientation of carbon fibre strands on an uneven polyurethane 3D core. The core is attached to the robot-end-effector and is led through a fibre-processing head according to a suitably defined robot trajectory during dry carbon fibre winding on the core. The model of a passage of the polyurethane core through a fibre-processing head is described in the article. The placement of the fibre-processing head is defined in the basic Euclidean coordinate system E_3 of the robot. The core is specified in the local coordinates of the Euclidean coordinate system E_3, the origin of this local system is in the robot-end-effector. The positioning of the local system in the basic system of the robot is entered using the "tool centre point" of the robot. A matrix calculus is used when calculating the trajectory robot-end-effector to determine the desired passage of the core through the fibre-processing head. Gradually, the required rotation and translation matrices of the local coordinate system of the robot-end-effector relative to the basic system are calculated and subsequently the Euler angles of rotation are determined corresponding to the transformation matrices. This is used to determine the sequence of values of the "tool centre point" for defining the desired trajectory of the robot-end-effector. The calculation for the trajectory was programmed in the Delphi development environment. The article also solves practical tasks of the polyurethane core passage through the fibre-processing head. The calculations of the trajectory of the robot-end-effector were used as input values for the graphic software simulator and at the same time winding of carbon strands on the polyurethane core was verified for the calculated trajectory of the robot-end-effector in the experimental laboratory.
机译:本文涉及计算复合材料制造中工业机器人末端执行器轨迹的问题。在本文的引言中,我们描述了用于制造复合材料的基本方法。机器人用于定义碳纤维股在不平坦的聚氨酯3D芯子上的缠绕方向。芯子附着在机器人末端执行器上,并在干碳纤维缠绕到芯子上时按照适当定义的机器人轨迹通过纤维处理头引导。这篇文章描述了聚氨酯芯通过纤维加工头的通道模型。光纤处理头的放置在机器人的基本欧几里德坐标系E_3中定义。核心是在欧几里得坐标系E_3的局部坐标中指定的,该局部系统的原点在机器人末端执行器中。使用机器人的“工具中心点”输入本地系统在机器人基本系统中的位置。在计算轨迹机械手末端执行器时,将使用矩阵演算来确定所需的纤芯通过纤维处理头的通道。逐渐地,计算出机器人末端执行器的局部坐标系相对于基本系统所需的旋转和平移矩阵,然后根据变换矩阵确定欧拉旋转角。这用于确定“工具中心点”的值顺序,以定义机器人末端执行器的所需轨迹。在Delphi开发环境中对轨迹的计算进行了编程。该文章还解决了聚氨酯纤芯通过纤维加工头的实际任务。机器人末端执行器的轨迹计算用作图形软件模拟器的输入值,同时验证聚氨酯芯上碳绞线的缠绕情况,以验证机器人末端执行器的计算轨迹。实验实验室。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号