首页> 外文期刊>Renewable & Sustainable Energy Reviews >Exergetic sustainability evaluation and multi-objective optimization of performance of an irreversible nanoscale Stirling refrigeration cycle operating with Maxwell Boltzmann gas
【24h】

Exergetic sustainability evaluation and multi-objective optimization of performance of an irreversible nanoscale Stirling refrigeration cycle operating with Maxwell Boltzmann gas

机译:用麦克斯韦·玻尔兹曼气体运行的不可逆纳米斯特林制冷循环的高能持续性评估和性能的多目标优化

获取原文
       

摘要

Introducing nanotechnology made a revolution in various industries such as upstream, downstream and energy industries. As a result, developing new types of nanoscale thermal cycles can develop the future of energy systems. The present work investigated a nanoscale irreversible Stirling refrigeration cycle thermodynamically in order to optimize the performance of the aforesaid cycle. In the above-mentioned cycle, an Ideal Maxwell-Boltzmann gas plays a role of a working fluid. Ideal Maxwell-Boltzmann gas was employed for working fluid in the cycle. Owing to the quantum limit influence on the gas particles restricted in the finite area, the cycle no longer retains the circumstance of perfect regeneration. He-4 is chosen as working fluid. This paper demonstrates two different plans in the process of multi-objective optimization; though, the results of each plan are assessed individually. The first scenario constructed with the purpose of maximizing the ecological coefficient of performance (ECOP), the coefficient of performance (COP) and the dimensionless Ecological function (ecf). Furthermore, the second scenario planned with the purpose of maximizing the exergy efficiency (eta(ex)), the coefficient of performance (COP) and the dimensionless Ecological function (ecf). All the scenarios in this paper are performed through the multi-objective evolutionary algorithms (MOEA) joined with NSGA II approach. Moreover, to determine the final solution in each scenario three effective decision makers are employed. Deviation of the results obtained in each scenario and each decision maker are calculated individually. Finally, the results of the suggested scenarios were compared to each other, and it reveals that when the exergy efficiency achieved the maximum value, the values of COP, ECOP, and ecf also maximized.
机译:纳米技术的引入在上游,下游和能源工业等各个行业掀起了一场革命。结果,开发新型的纳米级热循环可以开发能源系统的未来。本工作以热力学方式研究了纳米级不可逆斯特林制冷循环,以优化上述循环的性能。在上述循环中,理想的麦克斯韦-玻尔兹曼气体起着工作流体的作用。循环中使用理想的Maxwell-Boltzmann气体作为工作流体。由于量子极限对限制在有限区域内的气体颗粒的影响,该循环不再保留完美再生的情况。选择He-4作为工作流体。本文演示了多目标优化过程中的两个不同的计划。但是,每个计划的结果都是单独评估的。构建第一个方案的目的是最大化生态性能系数(ECOP),性能系数(COP)和无量纲生态功能(ecf)。此外,计划第二种方案的目的是使能效(eta(ex)),性能系数(COP)和无量纲生态函数(ecf)最大化。本文中所有场景都是通过结合NSGA II方法的多目标进化算法(MOEA)执行的。此外,为了确定每种情况下的最终解决方案,需要使用三个有效的决策者。每个方案和每个决策者获得的结果偏差都是单独计算的。最后,将建议方案的结果进行了相互比较,结果表明,当(火用)效率达到最大值时,COP,ECOP和ecf的值也会最大化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号