首页> 外文期刊>Quality Control, Transactions >Butler Matrix Based Beamforming Networks for Phased Array Antenna Systems: A Comprehensive Review and Future Directions for 5G Applications
【24h】

Butler Matrix Based Beamforming Networks for Phased Array Antenna Systems: A Comprehensive Review and Future Directions for 5G Applications

机译:基于Butler Matrix的分阶段阵列天线系统的波束成形网络:5G应用的全面审查和未来方向

获取原文
获取原文并翻译 | 示例
           

摘要

Due to the rapid development of wireless communication technologies, the number of wireless users are radically increasing. Currently, $sim 23$ billion wireless devices are connected to the internet, and these numbers are expected to increase manifolds in the years to come. The technology growth of the fifth-generation (5G) wireless systems will be needed to meet this high demand of the network. 5G wireless systems offer data-rates of up to 10Gbps, 1-ms latency, and reduced power consumption. It is a known fact that 5G wireless systems will be exploiting beyond the presently used 3 GHz microwave and millimetre-wave (mm-wave) frequency bands. This is the primary driver in the development of the 5G wireless system. Multi-beam Phased array antenna (PAA) systems are typically used in the deployment of 5G systems for high-gain and directionality. In current 5G and future Beyond 5G (B5G) antenna array systems, beamforming networks (BFNs) such as the Butler Matrix (BM) will play a key role in achieving multi-beam characteristics. So, this paper presents an extensive review of the BM based BFNs, and discusses which type of BM will be suitable for the phased array antenna (PAA) systems in the upcoming 5G and next-generation of B5G wireless systems. Moreover, this paper also summarizes the different types of BM designs based on the number of layers. The BMs are classified into the bi-layer, tri-layer, and four-layer structures. It includes different techniques that have been used to solve the problem of crossing, narrow bandwidth, and size reduction of the BM. From the previous studies, it is found that most of the past research work was performed using the bi-layer BM system, whereas the difficult geometries like tri- and four-layer BM are avoided due to their complex fabrication process. It is also found in this paper that the metamaterial (MTM) based bi-layer BM achieves low insertion-loss and phase-error, excellent bandwidth and compact size, and good S-parameter performance, which makes them an ideal BFN candidate for the upcoming 5G and next-generation B5G systems.
机译:由于无线通信技术的快速发展,无线用户的数量在根本上增加。目前,<内联公式XMLNS:MML =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http://www.w3.org/1999/xlink”> $ SIM 23 $ 亿无线设备已连接到互联网,预计这些数字将在未来几年增加流动。需要第五代(5G)无线系统的技术增长以满足网络的这种高需求。 5G无线系统提供高达10Gbps,1-ms延迟和降低功耗的数据率。众所周知,5G无线系统将利用超出现在使用的3 GHz微波和毫米波(MM波)频带。这是5G无线系统开发中的主要驱动因素。多光束相控阵天线(PAA)系统通常用于5G系统的用于高增益和方向性。在电流5G和未来之外超过5G(B5G)天线阵列系统,诸如管家矩阵(BM)之类的波束成形网络(BFN)将在实现多光束特性方面发挥关键作用。因此,本文提出了对基于BM的BFN的广泛审查,讨论了哪种类型的BM适用于即将到来的5G和下一代B5G无线系统中的相控阵天线(PAA)系统。此外,本文还总结了基于层数的不同类型的BM设计。将BMS分为双层,三层和四层结构。它包括用于解决BM的交叉,窄带宽和尺寸减小的问题的不同技术。从先前的研究来看,发现使用双层BM系统进行大多数过去的研究工作,而由于其复杂的制造工艺,避免了三层和四层BM等困难的几何形状。本文还发现了超石质(MTM)的双层BM实现了低插入损耗和相位误差,具有良好的带宽和紧凑尺寸,以及良好的S参数性能,使其成为理想的BFN候选者即将推出的5G和下一代B5G系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号