首页> 外文期刊>Quality Control, Transactions >A Bayesian Optimization Approach for Water Resources Monitoring Through an Autonomous Surface Vehicle: The Ypacarai Lake Case Study
【24h】

A Bayesian Optimization Approach for Water Resources Monitoring Through an Autonomous Surface Vehicle: The Ypacarai Lake Case Study

机译:自主地面车辆水资源监测贝叶斯优化方法:YPACARAI湖案例研究

获取原文
获取原文并翻译 | 示例
       

摘要

Bayesian Optimization is a sequential method for obtaining the maximum of an unknown function that has gained much popularity in recent years. Bayesian Optimization is commonly used to monitor the surface of large-scale aquatic environments using an Autonomous Surface Vehicle. We propose to model water quality parameters using Gaussian Processes, and propose three different adaptations of classical Acquisition Functions in order to explore an unknown space, considering surface vehicle restrictions. The proposed Sequential Bayesian Optimization system uses the aforementioned information in order to monitor the Lake and also to obtain a water quality model, which has an associated uncertainty map. For evaluation, the Mean Squared Error of the resulting approximated models are compared. Afterwards, they are compared with other monitoring algorithms, like the Traveling Salesman Problem, using Genetic Algorithms and Lawnmower. Concluding remarks indicate that the proposed method not only performs better while minimizing the Mean Squared Error (via active monitoring), but also manages to quickly identify an approximate of the black-box function, which is very useful for monitoring lakes like Ypacarai Lake ( $60: km^{2}$ ) in Paraguay. Additionally, the proposed method reduces the MSE by 25% when compared with Traveling Salesman Problem-based monitoring algorithms and also provides a more robust solution, i.e., 30% more independent of initial conditions, when compared with known robust coverage methods like the lawnmower method.
机译:贝叶斯优化是一种近年来获得最大函数的最大功能的顺序方法。贝叶斯优化通常用于使用自主地面车辆监测大型水生环境的表面。我们建议使用高斯工艺进行建模水质参数,并提出三种不同的经典采集职能调整,以探索未知的空间,考虑到表面车辆限制。所提出的顺序贝叶斯优化系统使用上述信息来监测湖泊,也可以获得具有相关不确定性地图的水质模型。为了评估,比较所得到的近似模型的平均平均误差。然后,使用遗传算法和割草机,与其他监测算法相比,它们与其他监测算法相提并论。结论备注表明,该方法不仅在最小化平均方形误差(通过主动监测)的同时不仅更好地执行,而且还可以管理快速识别黑盒功能的近似,这对于监控ypacarai湖(<内联XMLNS:MML =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http://www.w3.org/1999/xlink”> $ 60 :KM ^ {2} $ )在巴拉圭。此外,与基于旅行的推销员问题的监测算法相比,该方法还将MSE减少了25%,并且还提供更强大的解决方案,即与初始条件相比,与割草机方法等已知的鲁棒覆盖方法相比,30%更独立于初始条件。 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号