首页> 外文期刊>Quality Control, Transactions >Research on a Distributed Processing Model Based on Kafka for Large-Scale Seismic Waveform Data
【24h】

Research on a Distributed Processing Model Based on Kafka for Large-Scale Seismic Waveform Data

机译:基于Kafka进行大规模地震波形数据的分布式处理模型研究

获取原文
获取原文并翻译 | 示例

摘要

For storage and recovery requirements on large-scale seismic waveform data of the National Earthquake Data Backup Center (NEDBC), a distributed cluster processing model based on Kafka message queues is designed to optimize the inbound efficiency of seismic waveform data stored in HBase at NEDBC. Firstly, compare the characteristics of big data storage architectures with that of traditional disk array storage architectures. Secondly, realize seismic waveform data analysis and periodic truncation, and write HBase in NoSQL record form through Spark Streaming cluster. Finally, compare and test the read/write performance of the data processing process of the proposed big data platform with that of traditional storage architectures. Results show that the seismic waveform data processing architecture based on Kafka designed and implemented in this paper has a higher read/write speed than the traditional architecture on the basis of the redundancy capability of NEDBC data backup, which verifies the validity and practicability of the proposed approach.
机译:对于全国地震数据备份中心(NEDBC)的大规模地震波形数据(NEDBC)的存储和恢复要求,基于KAFKA消息队列的分布式集群处理模型旨在优化NEDBC在HBase中存储的地震波形数据的入站效率。首先,将大数据存储体系结构的特征与传统的磁盘阵列存储体系结构进行比较。其次,实现了地震波形数据分析和周期性截断,通过火花流群集地写入NoSQL记录表单的HBase。最后,比较和测试具有传统存储体系结构的提出的大数据平台数据处理过程的读/写性能。结果表明,基于Kafka的地震波形数据处理架构在本文中设计和实施的基于NEDBC数据备份的冗余能力,具有比传统架构更高的读/写速度,这验证了所提出的有效性和实用性方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号