首页> 外文期刊>Progress in Oceanography >Thermohaline structure, transport and evolution of the Black Sea eddies from hydrological and satellite data
【24h】

Thermohaline structure, transport and evolution of the Black Sea eddies from hydrological and satellite data

机译:从水文和卫星数据看黑海涡流的热盐结构,运输和演化

获取原文
获取原文并翻译 | 示例
           

摘要

Combination of altimetry-based method of eddy identification and historical hydrological measurements for 1992-2015 is used to analyze the thermohaline and dynamic structure of the Black Sea eddies and its relation with eddy intensity, eddy age and season of a year. Anticyclonic eddies (AEs) are characterized by negative salinity anomalies, which can reach -1.7 psu at the depth of the main halocline. The temperature anomalies are positive in their upper layers, and negative in the deeper layers, because of the vertical displacement of the waters of the Cold Intermediate Layer (CIL). Cyclonic eddies (CEs) have the opposite structure with increased salinity, colder upper layers and warmer deeper layers. Thermohaline anomalies in the eddies of both signs are maximal in summer, while in winter they are shallowest and minimal. The displacement of pycnocline in eddies causes the decrease/increase of stratification in the upper layer of AEs/CEs and opposite increase/decrease in their deeper layers. It also causes the deepening/uplift of the layer of maximum geostrophic vertical shear in AEs/CEs. The latter is the probable reason of the observed higher intensity and deeper penetration of orbital velocities in AEs than in CEs. The changes of isopycnals positions during the eddies' lifetime are used to quantify the evolution of vertical velocity in AEs and CEs. In the beginning of AEs life during intensification phase, vertical velocity is directed downward, while during the decaying phase it change its sign and is directed upward. The opposite is observed in CEs. Vertical velocity is maximal at the pycnocline depth of 100-110 m with values changing from (- 8 to 8)* 10(-6) m/s in AEs, and from (+ 5 to -25)10(-6) m/s in CEs. Eddies thermohaline structure and altimetry-derived orbital velocity is tightly related. This relation obtained in the study and altimetry-derived data an the distribution of eddy frequency, translational speed and orbital velocity is used to quantify eddies salt, heat content and transport in the basin. The transport velocity of water in the eddies core (2-4 cm/s) is significantly smaller than the average velocity of the large-scale currents (similar to 10-40 cm/s). Such slowing causes the "relative" transport of eddies against the mean flow direction. This effect leads to the accumulation of brackish and cold water in the deep layers of east Black Sea and maintain the observed east-west asymmetry of the basin thermohaline fields.
机译:结合1992-2015年基于测高的涡流识别方法和历史水文测量方法,对黑海涡流的热盐和动力结构及其与涡流强度,涡流年龄和一年四季的关系进行了分析。反气旋涡(AEs)的特征是盐度为负值,在主要盐环的深度可达到-1.7 psu。由于冷中间层(CIL)的水垂直位移,温度异常在其上层为正,而在较深层为负。旋风涡(CE)具有相反的结构,具有更高的盐度,较冷的上层和较热的较深层。两个迹象的涡流中的热盐异常在夏季最大,而在冬季则最浅且最小。涡旋霉素在涡流中的位移导致AEs / CEs上层分层的减少/增加,而在其深层中的分层增加/减少相反。它还会导致AEs / CEs中最大地转垂直切变层的加深/隆起。后者是可能的原因,即在AE中比在CE中观测到更高的强度和更深的轨道速度穿透。等涡位置在涡流寿命中的变化用于量化AE和CE中垂直速度的变化。在增强阶段的声发射寿命开始时,垂直速度朝下,而在衰减阶段,声波改变其符号并朝上。在CE中观察到相反的情况。台风深度100-110 m时垂直速度最大,在AEs中值从(-8到8)* 10(-6)m / s变化,从(+ 5到-25)10(-6)m / s(在CE中)。涡旋热盐的结构与高程轨道速度密切相关。在研究和高程数据中获得的这种关系以及涡流频率,平移速度和轨道速度的分布被用来量化流域中的涡流盐,热量和运移。水在涡流核心中的传输速度(2-4厘米/秒)明显小于大电流的平均速度(类似于10-40厘米/秒)。这种减慢导致涡流相对于平均流动方向的“相对”输送。这种作用导致咸淡水和冷水在黑海东部的深层积累,并保持了盆地热盐场的观察到的东西向不对称性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号