...
首页> 外文期刊>Progress in Oceanography >Biogeochemistry and hydrography in the eastern subtropical North Atlantic gyre. Results from the European time-series station ESTOC
【24h】

Biogeochemistry and hydrography in the eastern subtropical North Atlantic gyre. Results from the European time-series station ESTOC

机译:东亚热带北大西洋回旋区的生物地球化学和水文学。欧洲时间序列站ESTOC的结果

获取原文
获取原文并翻译 | 示例
           

摘要

Basin wide modeling studies have revealed a clear asymmetry of the biogeochemistry across the subtropical North Atlantic gyre, mainly relating to the magnitude and processes of nutrient supply and new and export production. Time-series measurements of the actual biogeography are needed to confirm and understand the inherent asymmetry. Here we present the first comprehensive time-series measurements carried out in the eastern boundary system of the subtropical North Atlantic gyre at the European Station for Time-Series in the Ocean, Canary Islands (ESTOC), located 100 km north of the Canary Islands. Standard water column properties have been measured at the station since 1994 at monthly intervals; monthly measurements of p_(CO_2) were added in 1996. There was a clear seasonality in phytoplankton development, with winter maxima of surface chlorophyll of around 0.4 mg Chlorophyll m~(-3), coinciding with the time of deepest winter mixing. The interannual variability in primary production, new production and net community production was mainly influenced by the onset and depth of wintertime mixing, relative to the depth of the nitracline in a given year. Yearly primary production estimated from in situ chlorophyll a and applying a bio-optical model varied from about 11 to 14 mol C m~(-2)yr~(-1). Net community production (NCP) estimated by the net change of dissolved inorganic carbon due to biological processes was always positive, contradicting earlier notions of a heterotrophic subtropical NE Atlantic, and ranged from 2 to 5 mol C m~(-2) yr~(-1). New production (NP), estimated as the potential phytoplankton production fuelled by the available nitrate in the euphotic zone due to wintertime convection and mesoscale uplift, ranged from 0.7 to 2.6 mol C m~(-2) yr~(-1). The discrepancy between NCP and NP is indicative of carbon-overconsumption in the mixed layer. Particulate organic carbon (POC) flux measured with shallow, moored, time-series traps, and in some years with surface tethered traps, amounted to about 0.2 mol C m~(-2) yr~(-1) at 150 m, on average a tenth to a fifth of NP and with little inter-annual variability. The difference between NP and POC flux may be explained by remineralization of organic carbon below the euphotic zone, export of dissolved organic carbon, active organic carbon export by migrating zooplankton as well as sampling errors. The little known seasonality of the decomposition of particulate matter below the mixed layer is also a possible source of underestimation of POC flux; we found evidence that highest POC flux in winter/spring was concomitant with the strongest decrease of flux with depth. This seasonality means that a single average exponent cannot be used in the power function for extrapolating flux from deeper to shallower depths. We identified short-term peaks in POC flux during the stratified summer period that we attribute to possible mesoscale uplift of the nitracline higher into the euphotic zone, triggering episodic production events.
机译:整个流域范围内的模拟研究表明,整个北亚热带副热带环流的生物地球化学存在明显的不对称性,这主要与养分供应,新生产和出口生产的规模和过程有关。需要对实际生物地理学进行时间序列测量,以确认和理解固有的不对称性。在这里,我们介绍了在位于加那利群岛以北100公里处的加那利群岛海洋时间序列欧洲站(ESTOC)的亚热带北大西洋涡流东边界系统中进行的首次综合时间序列测量。自1994年以来,该站每月对水柱的标准性能进行一次测量; 1996年每月增加p_(CO_2)的测量值。浮游植物的生长有明显的季节性变化,冬季表面叶绿素的最大值约为0.4 mg叶绿素m〜(-3),这与冬季最深混合的时间相吻合。初级生产,新生产和社区净生产中的年际变化主要受冬季混合的开始和深度的影响,相对于给定年份中硝苯胺的深度。根据原位叶绿素a估算的每年初级生产量和应用生物光学模型后的年产量约为11到14 mol C m〜(-2)yr〜(-1)。通过生物过程中溶解的无机碳的净变化估算的净社区生产(NCP)始终为正,与早期的亚热带亚热带东北大西洋的概念相矛盾,范围为2到5 mol C m〜(-2)yr〜( -1)。新产量(NP)估计为由于冬季对流和中尺度上升而在富营养区中可用硝酸盐推动的浮游植物潜在产量,范围为0.7到2.6 mol C m〜(-2)yr〜(-1)。 NCP和NP之间的差异表明混合层中碳的过度消耗。用浅的,系泊的时间序列阱和在几年内使用表面系留阱测得的颗粒有机碳(POC)通量在150 m时约为0.2 mol C m〜(-2)yr〜(-1)。平均NP的十分之一到五分之一,并且年际变化很小。 NP和POC通量之间的差异可以用富营养区以下的有机碳再矿化,溶解有机碳的出口,浮游动物迁移产生的活性有机碳的出口以及采样误差来解释。混合层下颗粒物质分解的鲜为人知的季节性变化也可能是低估POC通量的原因。我们发现有证据表明,冬季/春季最高的POC通量伴随着深度的通量下降最强。这种季节性意味着在幂函数中不能使用单个平均指数来推断从较深到较浅深度的通量。我们在夏季分层期间确定了POC通量的短期峰值,这归因于可能将硝唑啉的中尺度升高到较高的富营养区,从而引发了间歇性生产事件。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号