首页> 外文期刊>Progress in Oceanography >Coccolithophore growth and calcification in a changing ocean
【24h】

Coccolithophore growth and calcification in a changing ocean

机译:不断变化的海洋中球石藻的生长和钙化

获取原文
获取原文并翻译 | 示例
           

摘要

Coccolithophores are the most abundant calcifying phytoplankton in the ocean. These tiny primary producers have an important role in the global carbon cycle, substantially contributing to global ocean calcification, ballasting organic matter to the deep sea, forming part of the marine food web base, and influencing ocean atmosphere CO2 exchange. Despite these important impacts, coccolithophores are not explicitly simulated in most marine ecosystem models and, therefore, their impacts on carbon cycling are not represented in most Earth system models. Here, we compile field and laboratory data to synthesize overarching, across-species relationships between environmental conditions and coccolithophore growth rates and relative calcification (reported as a ratio of particulate inorganic carbon to particulate organic carbon in coccolithophore biomass, PIC/POC). We apply our relationships in a generalized coccolithophore model, estimating current surface ocean coccolithophore growth rates and relative calcification, and projecting how these may change over the 21st century using output from the Community Earth System Model large ensemble. We find that average increases in sea surface temperature of similar to 2-3 degrees C lead to faster coccolithophore growth rates globally (>10% increase) and increased calcification at high latitudes. Roughly an ubiquitous doubling of surface ocean pCO(2) by the end of the century has the potential to moderately stimulate coccolithophore growth rates, but leads to reduced calcification (similar to 25% decrease). Decreasing nutrient availability (from warming-induced increases in stratification) produces increases in relative calcification, but leads to similar to 25% slower growth rates. With all drivers combined, we observe decreases in calcification and growth in most low and mid latitude regions, with possible increases in both of these responses in most high latitude regions. Major limitations of our coccolithophore model stem from a lack of conclusive physiological responses to changes in irradiance (we do not include light limitation in our model), and a lack of physiological data for major coccolithophore species. Species within the Umbellosphaera genus, for example, are dominant in mid to low latitude regions where we predict some of the largest decreases in coccolithophore growth rate and calcification.
机译:球墨镜藻是海洋中最丰富的钙化浮游植物。这些微小的初级生产者在全球碳循环中发挥着重要作用,对全球海洋钙化,将有机物压入深海,形成海洋食物网基础的一部分以及影响海洋大气中的二氧化碳交换做出了重大贡献。尽管有这些重要的影响,但在大多数海洋生态系统模型中并未明确模拟球花珊瑚,因此,它们对碳循环的影响在大多数地球系统模型中均未体现。在这里,我们汇总了现场和实验室数据,以合成环境条件与球石藻生长速率和相对钙化之间的总体,跨物种关系(报告为球石藻生物质中无机碳与有机碳的比值,PIC / POC)。我们将我们的关系应用到一个广义的球石藻模型中,估算当前的地表海洋球石藻的生长速率和相对钙化,并利用“社区地球系统模型”大型集成体的输出,预测它们在21世纪的变化。我们发现,海表温度的平均升高接近2-3摄氏度,导致全球球石藻生长速度更快(增长> 10%)并在高纬度地区增加了钙化作用。到本世纪末,表层海洋pCO(2)的数量普遍增加了一倍,有潜力适度刺激球石藻生长速率,但导致钙化作用降低(降低幅度约为25%)。养分利用率的下降(由于变暖引起的分层增加)会导致相对钙化的增加,但会导致增长率降低约25%。综合考虑所有驱动因素,我们观察到在大多数低纬度和中纬度地区钙化和生长下降,而在大多数高纬度地区这两种反应都有可能增加。我们的球石藻模型的主要局限性是由于缺乏对辐照度变化的结论性生理反应(我们的模型中不包括光照限制),以及缺乏主要的球石藻物种的生理数据。例如,伞形目属中的物种在中低纬度地区占主导地位,在这里我们预测球石藻生长速率和钙化的最大下降。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号