首页> 外文期刊>Progress in Energy and Combustion Science >Recent progress in alkaline water electrolysis for hydrogen production and applications
【24h】

Recent progress in alkaline water electrolysis for hydrogen production and applications

机译:碱性水电解制氢的最新进展及应用

获取原文
获取原文并翻译 | 示例
       

摘要

Alkaline water electrolysis is one of the easiest methods for hydrogen production, offering the advantage of simplicity. The challenges for widespread use of water electrolysis are to reduce energy consumption, cost and maintenance and to increase reliability, durability and safety. This literature review examines the current state of knowledge and technology of hydrogen production by water electrolysis and identifies areas where R&D effort is needed in order to improve this technology. Following an overview of the fundamentals of alkaline water electrolysis, an electrical circuit analogy of resistances in the electrolysis system is introduced. The resistances are classified into three categories, namely the electrical resistances, the reaction resistances and the transport resistances. This is followed by a thorough analysis of each of the resistances, by means of thermodynamics and kinetics, to provide a scientific guidance to minimising the resistance in order to achieve a greater efficiency of alkaline water electrolysis. The thermodynamic analysis defines various electrolysis efficiencies based on theoretical energy input and cell voltage, respectively. These efficiencies are then employed to compare different electrolysis cell designs and to identify the means to overcome the key resistances for efficiency improvement. The kinetic analysis reveals the dependence of reaction resistances on the alkaline concentration, ion transfer, and reaction sites on the electrode surface, the latter is determined by the electrode materials. A quantitative relationship between the cell voltage components and current density is established, which links all the resistances and manifests the importance of reaction resistances and bubble resistances. The important effect of gas bubbles formed on the electrode surface and the need to minimise the ion transport resistance are highlighted. The historical development and continuous improvement in the alkaline water electrolysis technology are examined and different water electrolysis technologies are systematically compared using a set of the practical parameters derived from the thermodynamic and kinetic analyses. In addition to the efficiency improvements, the needs for reduction in equipment and maintenance costs, and improvement in reliability and durability are also established. The future research needs are also discussed from the aspects of electrode materials, electrolyte additives and bubble management, serving as a comprehensive guide for continuous development of the water electrolysis technology.
机译:碱性电解水是最简单的制氢方法之一,具有简单易行的优势。水电解的广泛使用面临的挑战是减少能耗,成本和维护,并提高可靠性,耐用性和安全性。这篇文献综述考察了水电解制氢的知识和技术的现状,并确定了需要进行研发工作以改进该技术的领域。在概述了碱性水电解的基本原理之后,介绍了电解系统中电阻的类似电路。电阻分为三类,即电阻,反应电阻和传输电阻。随后,通过热力学和动力学对每个电阻进行透彻的分析,以提供科学的指导以最小化电阻,从而获得更高的碱性电解水效率。热力学分析分别基于理论能量输入和电池电压定义了各种电解效率。然后,将这些效率用于比较不同的电解池设计,并确定克服关键阻力以提高效率的方法。动力学分析揭示了反应电阻对碱浓度,离子转移和电极表面反应部位的依赖性,后者由电极材料决定。建立了电池电压分量和电流密度之间的定量关系,该关系将所有电阻联系在一起,并表明了反应电阻和气泡电阻的重要性。突出了在电极表面上形成气泡的重要作用以及最小化离子传输阻力的需要。考察了碱性水电解技术的历史发展和不断改进,并使用从热力学和动力学分析中得出的一组实用参数,系统地比较了不同的水电解技术。除了提高效率外,还需要减少设备和维护成本,并提高可靠性和耐用性。还从电极材料,电解质添加剂和气泡管理等方面讨论了未来的研究需求,为水电解技术的持续发展提供了全面的指导。

著录项

  • 来源
    《Progress in Energy and Combustion Science》 |2010年第3期|307-326|共20页
  • 作者

    Kai Zeng; Dongke Zhang;

  • 作者单位

    Centre for Petroleum, Fuels and Energy (M050), The School of Mechanical Engineering, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009. Australia;

    Centre for Petroleum, Fuels and Energy (M050), The School of Mechanical Engineering, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009. Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    electrochemistry; electrolyte; gas bubbles; hydrogen; renewable energy; water electrolysis;

    机译:电化学电解质气泡氢;再生能源;水电解;
  • 入库时间 2022-08-18 00:27:30

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号