首页> 外文期刊>Progress in Aerospace Sciences >Applied radiation physics techniques for diagnostic evaluation of the plasma wind and thermal protection system critical parameters in aerospace reentry
【24h】

Applied radiation physics techniques for diagnostic evaluation of the plasma wind and thermal protection system critical parameters in aerospace reentry

机译:应用辐射物理学技术对航空航天折返中等离子风和热防护系统的关键参数进行诊断评估

获取原文
获取原文并翻译 | 示例
       

摘要

The reentry conditions endured by a vehicle entering the atmosphere from an Earth orbit or from an interplanetary trajectory are the most critical phases for materials used as Thermal Protection Systems (TPSs), since the spacecraft surfaces have to withstand extremely high heat fluxes and loads due to the hot plasmas generated downstream of the high energy shock waves due to the extreme deceleration. The gases are highly excited and heated to values up to 10000 K immediately downstream of the shock waves. The TPS surfaces are then heated by these gases through convection and radiation, producing very high wall heat fluxes and associated temperatures, which can produce TPS surface temperatures of up to 2300 K. Passive and active TPSs are employed to protect the inner cold structures of the spacecraft which are made from aluminium or metallic alloys. Passive TPS are classified as reusable or single use (ablative) materials. Facilities such as plasma wind tunnels are used to experimentally reproduce the atmospheric reentry of such vehicles. Their use allows the testing and qualification of the TPS which is subjected to thermal and mechanical stresses induced by the hypersonic jet in spite of the unavoidable intrinsic limitations when the complex flight physics phenomena are reproduced in ground test facilities. One of the most complex issues, associated with aerospace safety during a hypersonic Plasma Wind Tunnel test campaign is to measure the free jet temperature and monitor the high heat fluxes generated by the hot plasma, the correlated TPS surface temperatures, and the erosion rate (i.e., recession rate) affecting the behavior of materials representative of space vehicle subcomponents.The purpose of the present work is to review the diagnostic methodologies used in hypersonic test facilities associated with the working principles, the development, the potential and the limitations of arc jet plasma wind tunnels for the evaluation of the aforementioned critical parameters. At the same time, this review aims to illustrate the most advanced and sensitive non-intrusive diagnostics for the determination of the free jet temperature and its oxygen composition by means of spontaneous Optical Emission Spectroscopy (OES) and Laser Induced Fluorescence (LIF) respectively, and for the determination of the TPS temperature and erosion rate using free emissivity Dual Color Infrared Thermography (DCIT) and on Surface Layer Implantation (SLI) of radioactive tracers techniques.
机译:车辆从地球轨道或行星际轨道进入大气所承受的重入条件是用作热保护系统(TPS)的材料的最关键阶段,因为航天器表面必须承受极高的热通量和负荷由于极端减速,在高能冲击波下游产生了热等离子体。气体被高度激发并在冲击波的下游被加热到高达10000 K的值。然后,TPS表面通过对流和辐射被这些气体加热,从而产生很高的壁热通量和相关的温度,从而可以产生高达2300 K的TPS表面温度。采用被动和主动TPS保护内部的冷结构。由铝或金属合金制成的航天器。被动TPS被分类为可重复使用或一次性使用(烧蚀)材料。等离子风洞之类的设施用于实验性地再现此类车辆的大气折返。它们的使用允许TPS的测试和鉴定,尽管在地面测试设施中产生了复杂的飞行物理现象,但不可避免的固有局限性使TPS经受了由高超声速射流引起的热和机械应力。高超声速等离子风洞测试活动期间与航空航天安全相关的最复杂的问题之一是测量自由射流温度并监视由热等离子体产生的高热通量,相关的TPS表面温度和腐蚀速率(即(衰退率)会影响代表航天器子组件的材料的性能。本工作的目的是回顾与工作原理,发展,潜力和局限性有关的高超音速测试设备中使用的诊断方法评估上述关键参数的风洞。同时,本综述旨在说明最先进,最灵敏的非侵入式诊断方法,分别通过自发发射光谱(OES)和激光诱导荧光(LIF)测定自由射流温度及其氧组成,以及使用自由发射率双色红外热成像(DCIT)和放射性示踪剂技术在表面层注入(SLI)来确定TPS温度和腐蚀速率。

著录项

  • 来源
    《Progress in Aerospace Sciences》 |2020年第1期|100550.1-100550.16|共16页
  • 作者单位

    CIRA Italian Aerosp Res Ctr Dept Diagnost Methodol & Measurement Tech I-81043 Capua Italy|Univ Campania Luigi Vanvitelli Dept Math & Phys CIRCE Lab I-81100 Caserta Italy|Natl Inst Nucl Phys Sect Naples I-80126 Naples Italy;

    CIRA Italian Aerosp Res Ctr Dept Diagnost Methodol & Measurement Tech I-81043 Capua Italy;

    CIRA Italian Aerosp Res Ctr Dept Diagnost Methodol & Measurement Tech I-81043 Capua Italy|Polytech Univ Bari Dept Mech Math & Management I-70126 Capua Italy;

    CIRA Italian Aerosp Res Ctr Dept Aerothermodynam I-81043 Capua Italy;

    Univ Campania Luigi Vanvitelli Dept Math & Phys CIRCE Lab I-81100 Caserta Italy|Natl Inst Nucl Phys Sect Naples I-80126 Naples Italy;

    Univ Campania Luigi Vanvitelli Dept Math & Phys CIRCE Lab I-81100 Caserta Italy;

    CIRA Italian Aerosp Res Ctr Dept Diagnost Methodol & Measurement Tech I-81043 Capua Italy|Natl Inst Nucl Phys Sect Naples I-80126 Naples Italy;

    Natl Inst Nucl Phys Sect Naples I-80126 Naples Italy|Univ Naples Federico II Dept Phys Ettore Pancini I-80126 Naples Italy;

    Polytech Univ Bari Dept Mech Math & Management I-70126 Capua Italy;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号