首页> 外文期刊>Programming and Computer Software >Applying text mining methods for data loss prevention
【24h】

Applying text mining methods for data loss prevention

机译:应用文本挖掘方法预防数据丢失

获取原文
获取原文并翻译 | 示例

摘要

Currently, the greatest risks for information security of organizations are internal, rather than external, threats. Data loss prevention (DLP) systems are used for minimization of risks related to internal threats. The main function of the DLP systems is to prevent leak of confidential data; however, comparison of the DLP systems relies currently on their capabilities to analyze information captured and convenience of carrying out retrospective investigations of information security incident. In the paper, a new approach to retrospective analysis of user's text information is presented. The idea of the proposed approach consists in topic analysis of the text content processed by the user in the past and prediction of further user behavior with content. User text content can cover different categories, including confidential ones. The topic analysis of user text content assumes determination of main topics and their weights for given past time intervals. Based on deviations of behavior of user's operations with a content from the forecast, one can reveal time intervals when operation with documents of one or another category differs from normal (historical) work and when the user worked with documents of unusual categories. The proposed approach was experimentally verified on an example of actual corporate email correspondence created from the Enron data set.
机译:当前,组织信息安全的最大风险是内部威胁,而不是外部威胁。数据丢失防护(DLP)系统用于最小化与内部威胁有关的风险。 DLP系统的主要功能是防止机密数据泄漏;但是,DLP系统的比较当前依赖于它们分析捕获的信息的能力以及对信息安全事件进行追溯调查的便利性。在本文中,提出了一种新的方法来追溯分析用户的文本信息。所提出的方法的思想在于对用户过去处理的文本内容进行主题分析,并预测用户对该内容的进一步行为。用户文本内容可以涵盖不同的类别,包括机密内容。用户文本内容的主题分析假设在给定的过去时间间隔内确定了主要主题及其权重。基于用户对内容的预测行为与预测行为的偏差,可以揭示使用一种或另一种类型的文档进行的操作与正常(历史)工作不同以及用户使用异常类的文档进行操作时的时间间隔。在从Enron数据集创建的实际公司电子邮件通信的示例中,对提出的方法进行了实验验证。

著录项

  • 来源
    《Programming and Computer Software》 |2015年第1期|23-30|共8页
  • 作者单位

    Moscow MV Lomonosov State Univ, Dept Computat Math & Cybernet, Moscow 119991, Russia;

    Moscow MV Lomonosov State Univ, Dept Computat Math & Cybernet, Moscow 119991, Russia;

    Moscow MV Lomonosov State Univ, Dept Computat Math & Cybernet, Moscow 119991, Russia;

    Moscow MV Lomonosov State Univ, Dept Computat Math & Cybernet, Moscow 119991, Russia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号