首页> 外文期刊>Programming and Computer Software >Feature selection: Comparative Analysis of Binary Metaheuristics and Population Based Algorithm with Adaptive Memory
【24h】

Feature selection: Comparative Analysis of Binary Metaheuristics and Population Based Algorithm with Adaptive Memory

机译:特征选择:二元元启发式算法和基于种群的自适应记忆算法的比较分析

获取原文
获取原文并翻译 | 示例

摘要

The NP-hard feature selection problem is studied. For solving this problem, a population based algorithm that uses a combination of random and heuristic search is proposed. The solution is represented by a binary vector the dimension of which is determined by the number of features in the data set. New solution are generated randomly using the normal and uniform distribution. The heuristic underlying the proposed approach is formulated as follows: the chance of a feature to get into the next generation is proportional to the frequency with which this feature occurs in the best preceding solutions. The effectiveness of the proposed algorithm is checked on 18 known data sets. This algorithm is statistically compared with other similar algorithms.
机译:研究了NP难特征选择问题。为了解决这个问题,提出了一种使用随机和启发式搜索相结合的基于种群的算法。解由二进制向量表示,其向量大小由数据集中的特征数量决定。使用正态分布和均匀分布随机生成新解。提议的方法所基于的启发式公式如下:特征进入下一代的机会与该特征在最佳的先前解决方案中出现的频率成正比。在18个已知数据集上检查了所提出算法的有效性。该算法与其他类似算法进行了统计比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号