...
首页> 外文期刊>Process Biochemistry >Selective immobilization of Bacillus subtilis lipase A from cell culture supernatant: Improving catalytic performance and thermal resistance
【24h】

Selective immobilization of Bacillus subtilis lipase A from cell culture supernatant: Improving catalytic performance and thermal resistance

机译:从细胞培养上清液中选择性固定枯草芽孢杆菌脂肪酶A:提高催化性能和耐热性

获取原文
获取原文并翻译 | 示例
           

摘要

Bacillus subtilis lipase A (BSLA) has been extensively studied through protein engineering; however, its immobilization and behavior as an insoluble biocatalyst have not been extensively explored. In this work, for the first time, a direct immobilization of recombinant BSLA from microbial culture supernatant was reported, using chemically modified porous with different electrostatic, hydrophobic, hydrophilic, and hydrophilic - hydrophobic enzyme-support interactions. The resulting biocatalysts were evaluated based on their immobilization kinetics, activity expression (pH 7.4), thermal stability (50 degrees C), solvent resistance and substrate preference. Biocatalysts obtained using glyoxyl silica support resulted in the selective immobilization of BSLA, resulting in an activity recovery of 50 % and an outstanding aqueous stabilization factor of 436, and 9.5 in isopropyl alcohol, compared to the free enzyme. This selective immobilization methodology of BSLA allows to efficiently generate immobilized biocatalysts, thus avoiding laborious purification steps from cell culture supernatant, which is usually a limiting step when large amounts of enzyme variants or candidates are assessed as immobilized biocatalysts. Direct enzyme immobilization from cell supernatant provides an interesting tool which can be used to facilitate the development and assessment of immobilized biocatalysts from engineered enzyme variants and mutant libraries, especially in harsh conditions, such as high temperatures or non-aqueous solvents, or against non-water-soluble substrates. Furthermore, selective immobilization approaches from cell culture supernatant or clarified lysates could help bridging the gap between protein engineering and enzyme immobilization, allowing for the implementation of immobilization steps in high throughput enzyme screening platforms for their potential use in directed evolution campaigns.
机译:枯草芽孢杆菌脂肪酶A(BSLA)已通过蛋白质工程学进行了广泛研究。然而,其作为不溶性生物催化剂的固定化和行为尚未得到广泛研究。在这项工作中,首次报道了使用具有不同的静电,疏水,亲水和亲水-疏水酶-支持相互作用的化学修饰的多孔材料,从微生物培养上清液中直接固定重组BSLA的方法。基于它们的固定化动力学,活性表达(pH 7.4),热稳定性(50℃),耐溶剂性和底物偏好来评估所得的生物催化剂。与游离酶相比,使用乙醛基二氧化硅载体获得的生物催化剂可选择性固定BSLA,从而在异丙醇中的活性回收率为50%,出色的水稳定因子为436,在异丙醇中为9.5。 BSLA的这种选择性固定化方法可以有效地产生固定化的生物催化剂,从而避免了从细胞培养上清液中进行繁琐的纯化步骤,当将大量的酶变体或候选物评估为固定化的生物催化剂时,这通常是一个限制步骤。从细胞上清液中直接酶固定化提供了一种有趣的工具,可用于促进工程化酶变体和突变体文库中固定化生物催化剂的开发和评估,尤其是在苛刻的条件下,例如高温或非水溶剂,或针对非水溶性底物。此外,从细胞培养上清液或澄清的裂解物中选择固定化方法可以帮助弥合蛋白质工程与酶固定化之间的鸿沟,从而允许在高通量酶筛选平台中实施固定化步骤,以用于其在定向进化活动中的潜在用途。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号