首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Expression of a calmodulin-binding KCNQ2 potassium channel fragment modulates neuronal M-current and membrane excitability.
【24h】

Expression of a calmodulin-binding KCNQ2 potassium channel fragment modulates neuronal M-current and membrane excitability.

机译:钙调蛋白结合KCNQ2钾通道片段的表达调节神经元M流和膜兴奋性。

获取原文
获取原文并翻译 | 示例
       

摘要

KCNQ2 and KCNQ3 ion channel pore-forming subunits coassemble to form a heteromeric voltage-gated potassium channel that underlies the neuronal M-current. We and others showed that calmodulin (CaM) binds to specific sequence motifs in the C-terminal domain of KCNQ2 and KCNQ3. We also found that a fusion protein containing a KCNQ2 CaM-binding motif, coexpressed with KCNQ2 and KCNQ3, competes with the full-length KCNQ2 channel for CaM binding and thereby decreases KCNQ2/3 current density in heterologous cells. We have explored the importance of CaM binding for the generation of the native M-current and regulation of membrane excitability in rat hippocampal neurons in primary cell culture. M-current properties were studied in cultured neurons by using whole-cell patch clamp recording. The M-current density is lower in neurons expressing the CaM-binding motif fusion protein, as compared to control neurons transfected with vector alone. In contrast, no change in M-current density is observed in cells transfected with a mutant fusion protein that is unable to bind CaM. The CaM-binding fusion protein does not influence the rapidly inactivating A-current or the large conductance calcium-activated potassium channel-mediated fast spike afterhyperpolarization in neurons in which the M-current is suppressed. Furthermore, the CaM-binding fusion protein, but not the nonbinding mutant, increases both the number of action potentials evoked by membrane depolarization and the size of the spike afterdepolarization. These results suggest that CaM binding regulates M-channel function and membrane excitability in the native neuronal environment.
机译:KCNQ2和KCNQ3离子通道成孔亚基共同组装形成异源电压门控钾通道,该通道是神经元M电流的基础。我们和其他人表明,钙调蛋白(CaM)与KCNQ2和KCNQ3的C端结构域中的特定序列基序结合。我们还发现,与KCNQ2和KCNQ3共表达的,包含KCNQ2 CaM结合基序的融合蛋白与全长KCNQ2通道竞争CaM结合,从而降低了异源细胞中的KCNQ2 / 3电流密度。我们已经探索了CaM结合对于原代细胞培养中大鼠海马神经元中天然M电流的产生和膜兴奋性调节的重要性。通过使用全细胞膜片钳记录,在培养的神经元中研究了M-电流特性。与仅用载体转染的对照神经元相比,表达CaM结合基序融合蛋白的神经元的M电流密度较低。相反,在用不能结合CaM的突变融合蛋白转染的细胞中未观察到M电流密度的变化。 CaM结合融合蛋白不影响神经元中M电流被抑制的超极化后快速失活的A电流或大电导的钙激活的钾离子通道介导的快速棘突。此外,CaM结合融合蛋白,而不是非结合突变体,不但增加了膜去极化引起的动作电位数量,还增加了去极化后的刺突大小。这些结果表明CaM结合调节天然神经元环境中的M通道功能和膜兴奋性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号