首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >A Mutant Glnd Nitrogen Sensor Protein Leads To A Nitrogen-fixing But Ineffective Sinorhizobium Meliloti Symbiosis With Alfalfa
【24h】

A Mutant Glnd Nitrogen Sensor Protein Leads To A Nitrogen-fixing But Ineffective Sinorhizobium Meliloti Symbiosis With Alfalfa

机译:突变的Glnd氮传感器蛋白导致固氮但无效的苜蓿苜蓿根瘤菌与苜蓿共生

获取原文
获取原文并翻译 | 示例
       

摘要

The nitrogen-fixing symbiosis between rhizobia and legume plants is a model of coevolved nutritional complementation. The plants reduce atmospheric CO_2 by photosynthesis and provide carbon compounds to symbiotically associated bacteria; the rhizobia use these compounds to reduce (fix) atmospheric N_2 to ammonia, a form of nitrogen the plants can use. A key feature of symbiotic N_2 fixation is that N_2 fixation is uncoupled from bacterial nitrogen stress metabolism so that the rhizobia generate "excess" ammonia and release this ammonia to the plant. In the symbiosis between Sinorhizobium meliloti and alfalfa, mutations in GlnD, the major bacterial nitrogen stress response sensor protein, led to a symbiosis in which nitrogen was fixed (Fix~+) but was not effective (Eff~- ) in substantially increasing plant growth. Fixed~(15)N_2 was transported to the shoots, but most fixed~(15)N was not present in the plant after 24 h. Analysis of free-living S. meliloti strains with mutations in genes related to nitrogen stress response regulation (glnD, glnB, ntrC, and ntrA) showed that catabolism of various nitrogen-containing compounds depended on the NtrC and GlnD components of the nitrogen stress response cascade. However, only mutants of GlnD with an amino terminal deletion had the unusual Fix~+Eff~- symbiotic phenotype, and the data suggest that these glnD mutants export fixed nitrogen in a form that the plants cannot use. These results indicate that bacterial nitrogen stress regulation is important to symbiotic productivity and suggest that GlnD may act in a novel way to influence symbiotic behavior.
机译:根瘤菌和豆科植物之间的固氮共生是营养进化互补的模型。这些植物通过光合作用减少了大气中的二氧化碳,并为共生细菌提供了碳化合物。根瘤菌利用这些化合物将大气中的N_2还原(固定)为氨,这是植物可以利用的一种氮。共生N_2固定的关键特征是N_2固定与细菌氮胁迫代谢无关,因此,根瘤菌会产生“过量”的氨并将该氨释放到植物中。在苜蓿中华根瘤菌和苜蓿之间的共生中,主要细菌氮胁迫响应传感器蛋白GlnD的突变导致共生,其中固氮(Fix〜+)但对有效增加植物生长无效(Eff〜-) 。固定〜(15)N_2被转运到芽上,但大多数固定(15)N在24小时后不存在于植物中。分析与氮胁迫响应调控相关的基因(glnD,glnB,ntrC和ntrA)具有突变的自由活动链霉菌菌株后发现,各种含氮化合物的分解代谢取决于氮胁迫响应的NtrC和GlnD成分级联。然而,只有具有氨基末端缺失的GlnD突变体具有非同寻常的Fix〜+ Eff〜-共生表型,数据表明这些glnD突变体以植物无法利用的形式输出固定氮。这些结果表明细菌氮胁迫调节对共生生产力很重要,并表明GlnD可能以一种新颖的方式影响共生行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号