首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Robust circadian clocks from coupled protein- modification and transcription-translation cycles
【24h】

Robust circadian clocks from coupled protein- modification and transcription-translation cycles

机译:耦合的蛋白质修饰和转录翻译循环产生的稳健的生物钟

获取原文
获取原文并翻译 | 示例
       

摘要

The cyanobacterium Synechococcus elongatus uses both a protein phosphorylation cycle and a transcription-translation cycle to generate circadian rhythms that are highly robust against biochemical noise. We use stochastic simulations to analyze how these cycles interact to generate stable rhythms in growing, dividing cells. We find that a protein phosphorylation cycle by itself is robust when protein turnover is low. For high decay or dilution rates (and compensating synthesis rates), however, the phosphorylation-based oscillator loses its integrity. Circadian rhythms thus cannot be generated with a phosphorylation cycle alone when the growth rate, and consequently the rate of protein dilution, is high enough; in practice, a purely posttranslational clock ceases to function well when the cell doubling time drops below the 24-h clock period. At higher growth rates, a transcription-translation cycle becomes essential for generating robust circadian rhythms. Interestingly, although a transcription-translation cycle is necessary to sustain a phosphorylation cycle at high growth rates, a phosphorylation cycle can dramatically enhance the robustness of a transcription-translation cycle at lower protein decay or dilution rates. In fact, the full oscillator built from these two tightly intertwined cycles far outperforms not just each of its two components individually, but also a hypothetical system in which the two parts are coupled as in textbook models of coupled phase oscillators. Our analysis thus predicts that both cycles are required to generate robust circadian rhythms over the full range of growth conditions.
机译:蓝藻延长线同时利用蛋白质的磷酸化周期和转录-翻译周期来产生对生物化学噪声具有高度鲁棒性的昼夜节律。我们使用随机模拟来分析这些循环如何相互作用以在生长中的分裂细胞中产生稳定的节律。我们发现,当蛋白质周转率较低时,蛋白质磷酸化循环本身就很稳定。但是,对于高衰减率或稀释率(和补偿合成率),基于磷酸化的振荡器会失去其完整性。因此,当生长速度(因此蛋白质稀释速度)足够高时,仅靠磷酸化周期就不能产生昼夜节律。实际上,当单元倍增时间降到24小时时钟周期以下时,纯翻译后时钟将无法正常工作。在较高的增长率下,转录-翻译循环对于产生稳健的昼夜节律至关重要。有趣的是,尽管转录-翻译循环对于维持高生长速率的磷酸化循环是必需的,但是磷酸化循环可以在较低的蛋白质衰减或稀释率下显着增强转录-翻译循环的鲁棒性。实际上,由这两个紧密交织的周期构成的完整振荡器不仅性能远胜于其两个组成部分中的每一个,而且远胜于一个假设系统,其中两个部分如耦合相位振荡器的教科书模型中那样耦合。因此,我们的分析预测,在整个生长条件范围内,都需要两个周期才能产生鲁棒的昼夜节律。

著录项

  • 来源
  • 作者单位

    FOM (Stichting voor Fundamenteel Onderzoek der Materie) Institute for Atomic and Molecular Physics (AMOLF), Science Park 104, 1098 XG Amsterdam,The Netherlands;

    Department of Physics, University of Michigan, Ann Arbor, Ml 48109-1040;

    FOM (Stichting voor Fundamenteel Onderzoek der Materie) Institute for Atomic and Molecular Physics (AMOLF), Science Park 104, 1098 XG Amsterdam,The Netherlands;

  • 收录信息 美国《科学引文索引》(SCI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    kai; oscillations;

    机译:凯Ocillatins;
  • 入库时间 2022-08-18 00:41:32

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号