首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Structure and function of an iterative polyketide synthase thioesterase domain catalyzing Claisen cyclization in aflatoxin biosynthesis
【24h】

Structure and function of an iterative polyketide synthase thioesterase domain catalyzing Claisen cyclization in aflatoxin biosynthesis

机译:黄曲霉毒素生物合成中催化克莱森环化的迭代聚酮化合物合酶硫酯酶结构域的结构和功能

获取原文
获取原文并翻译 | 示例
       

摘要

Polyketide natural products possess diverse architectures and biological functions and share a subset of biosynthetic steps with fatty acid synthesis. The final transformation catalyzed by both polyketide synthases (PKSs) and fatty acid synthases is most often carried out by a thioesterase (TE). The synthetic versatility of TE domains in fungal nonreducing, iterative PKSs (NR-PKSs) has been shown to extend to Claisen cyclase (CLC) chemistry by catalyzing C-C ring closure reactions as opposed to thioester hydrolysis or O-C/N-C macrocyclization observed in previously reported TE structures. Catalysis of C-C bond formation as a product release mechanism dramatically expands the synthetic potential of PKSs, but how this activity was acquired has remained a mystery. We report the biochemical and structural analyses of the TE/CLC domain in polyketide synthase A, the multidomain PKS central to the biosynthesis of aflatoxin B_1, a potent environmental carcinogen. Mutagenesis experiments confirm the predicted identity of the catalytic triad and its role in catalyzing the final Claisen-type cyclization to the aflatoxin precursor, norsolorinic acid anthrone. The 1.7 A crystal structure displays an α/β-hydrolase fold in the catalytic closed form with a distinct hydrophobic substrate-binding chamber. We propose that a key rotation of the substrate side chain coupled to a protein confor-mational change from the open to closed form spatially governs substrate positioning and C-C cyclization. The biochemical studies, the 1.7 A crystal structure of the TE/CLC domain, and intermediate modeling afford the first mechanistic insights into this widely distributed C-C bond-forming class of TEs.
机译:聚酮化合物天然产物具有多种结构和生物学功能,并且与脂肪酸合成共有一部分生物合成步骤。聚酮化合物合酶(PKSs)和脂肪酸合酶两者催化的最终转化通常是由硫酯酶(TE)进行的。研究表明,在真菌非还原性,反复PKSs(NR-PKSs)中,TE结构域的合成多功能性可通过催化CC闭环反应扩展至克莱森环化酶(CLC)化学,这与先前报道的TE中观察到的硫酯水解或OC / NC大环化相反结构。 C-C键形成作为产物释放机制的催化作用极大地扩展了PKS的合成潜力,但是如何获得这种活性仍然是一个谜。我们报告了聚酮化合物合酶A TE / CLC域的生化和结构分析,聚酮化合物合酶A是黄曲霉毒素B_1(一种强效的环境致癌物)生物合成的核心多域PKS。诱变实验证实了催化三联体的预测身份及其在催化最终的Claisen型环化成黄曲霉毒素前体降冰片酸蒽酮中的作用。 1.7 A晶体结构在催化闭合形式下具有明显的疏水性底物结合腔,显示出α/β水解酶折叠。我们提出,与从开放到封闭形式的蛋白质构象变化耦合的底物侧链的关键旋转空间控制着底物的定位和C-C环化。生化研究,TE / CLC域的1.7 A晶体结构以及中间建模为这种广泛分布的C-C键形成类TE提供了第一个力学见解。

著录项

  • 来源
  • 作者单位

    Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697;

    rnDepartment of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218;

    rnDepartment of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218;

    rnDepartment of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218;

    rnDepartments of Chemistry, University of California, Irvine, CA 92697;

    rnDepartment of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218;

    rnDepartment of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697 Departments of Chemistry, University of California, Irvine, CA 92697 Pharmaceutical Sciences, University of California, Irvine, CA 92697;

  • 收录信息 美国《科学引文索引》(SCI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    biosynthesis; fungal metabolism; mutagenesis;

    机译:生物合成真菌代谢诱变;
  • 入库时间 2022-08-18 00:41:19

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号