首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Catalysis by dihydrofolate reductase and other enzymes arises from electrostatic preorganization, not conformational motions
【24h】

Catalysis by dihydrofolate reductase and other enzymes arises from electrostatic preorganization, not conformational motions

机译:二氢叶酸还原酶和其他酶的催化作用源自静电预组织,而非构象运动

获取原文
获取原文并翻译 | 示例
       

摘要

The proposal that enzymatic catalysis is due to conformational fluctuations has been previously promoted by means of indirect considerations. However, recent works have focused on cases where the relevant motions have components toward distinct conformational regions, whose population could be manipulated by mutations. In particular, a recent work has claimed to provide direct experimental evidence for a dynamical contribution to catalysis in dihydrofolate reductase, where blocking a relevant conformational coordinate was related to the suppression of the motion toward the occluded conformation. The present work utilizes computer simulations to elucidate the true molecular basis for the experimentally observed effect. We start by reproducing the trend in the measured change in catalysis upon mutations (which was assumed to arise as a result of a "dynamical knockout" caused by the mutations). This analysis is performed by calculating the change in the corresponding activation barriers without the need to invoke dynamical effects. We then generate the catalytic landscape of the enzyme and demonstrate that motions in the conformational space do not help drive catalysis. We also discuss the role of flexibility and conformational dynamics in catalysis, once again demonstrating that their role is negligible and that the largest contribution to catalysis arises from electrostatic preorganization. Finally, we point out that the changes in the reaction potential surface modify the reorganization free energy (which includes entropic effects), and such changes in the surface also alter the corresponding motion. However, this motion is never the reason for catalysis, but rather simply a reflection of the shape of the reaction potential surface.
机译:酶催化是由于构象波动引起的提议先前已经通过间接考虑的手段得到了推广。然而,最近的工作集中在相关运动具有朝向不同构象区域的成分的情况下,该区域可以通过突变来操纵。特别是,最近的一项工作声称为二氢叶酸还原酶催化的动力学贡献提供了直接的实验证据,其中阻断相关的构象坐标与抑制向封闭构象的运动有关。本工作利用计算机模拟来阐明实验观察效果的真正分子基础。我们从重现突变后催化的测量变化趋势开始(假定是由于突变引起的“动态敲除”而产生的)。通过计算相应激活障碍的变化来执行此分析,而无需调用动力学效应。然后,我们生成酶的催化态势,并证明构象空间中的运动无助于推动催化作用。我们还将讨论柔韧性和构象动力学在催化中的作用,再次证明它们的作用可忽略不计,并且对静电的最大贡献来自于静电预组织。最后,我们指出反应势能表面的变化会改变重组自由能(包括熵效应),并且表面上的这种变化也会改变相应的运动。然而,该运动决不是催化的原因,而仅仅是反应势能表面形状的反映。

著录项

  • 来源
  • 作者单位

    Department of Chemistry (Seeley G. Mudd 418), University of Southern California, 3620 McClintock Avenue, Los Angeles, CA 90089;

    Department of Chemistry (Seeley G. Mudd 418), University of Southern California, 3620 McClintock Avenue, Los Angeles, CA 90089;

    Department of Cell and Molecular Biology, Uppsala University, Uppsala Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden;

    Department of Chemistry (Seeley G. Mudd 418), University of Southern California, 3620 McClintock Avenue, Los Angeles, CA 90089;

  • 收录信息 美国《科学引文索引》(SCI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 00:40:53

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号