首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Histone methyltransferase MLL3 contributes to genome-scale circadian transcription
【24h】

Histone methyltransferase MLL3 contributes to genome-scale circadian transcription

机译:组蛋白甲基转移酶MLL3有助于基因组规模的昼夜节律转录

获取原文
获取原文并翻译 | 示例
       

摘要

Daily cyclical expression of thousands of genes in tissues such as the liver is orchestrated by the molecular circadian clock, the disruption of which is implicated in metabolic disorders and cancer. Although we understand much about the circadian transcription factors that can switch gene expression on and off, it is still unclear how global changes in rhythmic transcription are controlled at the genomic level. Here, we demonstrate circadian modification of an activating histone mark at a significant proportion of gene loci that undergo daily transcription, implicating widespread epigenetic modification as a key node regulated by the clockwork. Furthermore, we identify the histone-remodelling enzyme mixed lineage leukemia (MLL)3 as a clock-controlled factor that is able to directly and indirectly modulate over a hundred epigenetically targeted circadian "output" genes in the liver. Importantly, catalytic inactivation of the histone methyltransferase activity of MLL3 also severely compromises the oscillation of "core" clock gene promoters, including Bmali, mCryl, mPer2, and Rev-erba, suggesting that rhythmic histone methylation is vital for robust transcriptional oscillator function. This highlights a pathway by which the clockwork exerts genome-wide control over transcription, which is critical for sustaining temporal programming of tissue physiology.
机译:分子生物钟调控着肝脏等组织中成千上万个基因的日常循环表达,这种生物钟的破坏与代谢紊乱和癌症有关。尽管我们对可以打开和关闭基因表达的昼夜节律转录因子了解很多,但仍不清楚如何在基因组水平上控制节律性转录的整体变化。在这里,我们证明了在经历日常转录的基因座的显着比例中,激活组蛋白标记的昼夜节律修饰,这意味着广泛的表观遗传修饰是发条调控的关键节点。此外,我们确定组蛋白重塑酶混合谱系白血病(MLL)3为时钟控制因子,它能够直接和间接调节肝脏中一百多个表观遗传学的昼夜节律“输出”基因。重要的是,MLL3的组蛋白甲基转移酶活性的催化失活也严重损害了“核心”时钟基因启动子的振荡,包括Bmali,mCryl,mPer2和Rev-erba,这表明节律性组蛋白甲基化对于强大的转录振荡器功能至关重要。这突出显示了发条对转录进行全基因组控制的途径,这对于维持组织生理的暂时编程至关重要。

著录项

  • 来源
  • 作者单位

    Department of Clinical Neurosciences, University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, National Institute for Health Research Cambridge Biomedical Research Centre, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, United Kingdom;

    Department of Clinical Neurosciences, University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, National Institute for Health Research Cambridge Biomedical Research Centre, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, United Kingdom;

    Department of Genetics, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands;

    Department of Genetics, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands;

    Department of Clinical Neurosciences, University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, National Institute for Health Research Cambridge Biomedical Research Centre, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, United Kingdom;

    Department of Genetics, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands;

    Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom;

    Department of Clinical Neurosciences, University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, National Institute for Health Research Cambridge Biomedical Research Centre, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, United Kingdom;

  • 收录信息 美国《科学引文索引》(SCI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    epigenomics; systems biology;

    机译:表基因组学系统生物学;
  • 入库时间 2022-08-18 00:39:53

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号