首页> 外文期刊>Proceedings of the Institution of Mechanical Engineers. Part L, Journal of Materials: Design and Application >A high-fidelity crystal-plasticity finite element methodology for low-cycle fatigue using automatic electron backscatter diffraction scan conversion: Application to hot-rolled cobalt-chromium alloy
【24h】

A high-fidelity crystal-plasticity finite element methodology for low-cycle fatigue using automatic electron backscatter diffraction scan conversion: Application to hot-rolled cobalt-chromium alloy

机译:使用自动电子反散衍射扫描转化的高保真晶体可塑性有限元方法,用于低循环疲劳衍射扫描转化:在热轧钴铬合金中的应用

获取原文
获取原文并翻译 | 示例
       

摘要

The common approach to crystal-plasticity finite element modeling for load-bearing prediction of metallic structures involves the simulation of simplified grain morphology and substructure detail. This paper details a methodology for predicting the structure-property effect of as-manufactured microstructure, including true grain morphology and orientation, on cyclic plasticity, and fatigue crack initiation in biomedical-grade CoCr alloy. The methodology generates high-fidelity crystal-plasticity finite element models, by directly converting measured electron backscatter diffraction metal microstructure grain maps into finite element microstructural models, and thus captures essential grain definition for improved microstructure-property analyses. This electron backscatter diffraction-based method for crystal-plasticity finite element model generation is shown to give approximately 10% improved agreement for fatigue life prediction, compared with the more commonly used Voronoi tessellation method. However, the added microstructural detail available in electron backscatter diffraction-crystal-plasticity finite element did not significantly alter the bulk stress-strain response prediction, compared to Voronoi tessellation-crystal-plasticity finite element. The new electron backscatter diffraction-based method within a strain-gradient crystal-plasticity finite element model is also applied to predict measured grain size effects for cyclic plasticity and fatigue crack initiation, and shows the concentration of geometrically necessary dislocations around true grain boundaries, with smaller grain samples exhibiting higher overall geometrically necessary dislocations concentrations. In addition, minimum model sizes for Voronoi tessellation-crystal-plasticity finite element and electron backscatter diffraction-crystal-plasticity finite element models are proposed for cyclic hysteresis and fatigue crack initiation prediction.
机译:金属结构承载预测的晶体塑性有限元建模的常用方法涉及简化晶粒形态和子结构细节的模拟。本文详述了预测制造微观结构的结构 - 性能效应的方法,包括真正的晶粒形态和取向,循环可塑性,以及生物医学级COLD合金中的疲劳裂纹引发。该方法通过将测量的电子背散射衍射金属微观结构晶粒图直接转化为有限元微结构模型,产生高保真晶体塑性有限元模型,从而捕获了改进的微观结构 - 性质分析的基本晶粒定义。该电子反向散射衍射的基于晶体塑性有限元模型的方法,显示出约10%的疲劳寿命预测协议,与更常用的voronoi曲面细分方法相比。然而,与Voronoi Tessellation晶体塑性有限元有限元件相比,电子反向散射衍射 - 晶体塑性有限元有限元的添加微观结构细节没有显着改变散装应力 - 应变响应预测。在应变梯度晶体塑性有限元模型中的新电子反向散射衍射基方法也应用于预测循环可塑性和疲劳裂纹引发的测量晶粒尺寸效应,并显示出围绕真正晶界的几何必要位错浓度较小的谷物样品表现出更高的整体几何前列位错浓度。此外,提出了用于voronoi曲面层晶体可塑性有限元件和电子反向散射衍射 - 晶体塑性有限元模型的最小型号尺寸,用于循环滞后和疲劳裂纹启动预测。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号