首页> 外文期刊>IEEE Transactions on Power Systems >Improving Power System State Estimation Based on Matrix-Level Cleaning
【24h】

Improving Power System State Estimation Based on Matrix-Level Cleaning

机译:基于矩阵级清洁的提高电力系统状态估计

获取原文
获取原文并翻译 | 示例

摘要

Power system state estimation is heavily subjected to measurement error, which comes from the noise of measuring instruments, communication noise, and some unclear randomness. Traditional weighted least square (WLS), as the most universal state estimation method, attempts to minimize the residual between measurements and the estimation of measured variables, but it is unable to handle the measurement error. To solve this problem, based on random matrix theory, this paper proposes a data-driven approach to clean measurement error in matrix-level. Our method significantly reduces the negative effect of measurement error, and conducts a two-stage state estimation scheme combined with WLS. In this method, a Hermitian matrix is constructed to establish an invertible relationship between the eigenvalues of measurements and their covariance matrix. Random matrix tools, combined with an optimization scheme, are used to clean measurement error by shrinking the eigenvalues of the covariance matrix. With great robustness and generality, our approach is particularly suitable for large interconnected power grids. Our method has been numerically evaluated using different testing systems, multiple models of measured noise and matrix size ratios.
机译:电力系统状态估计严重遭受测量误差,这来自测量仪器,通信噪声和一些不明确的随机性的噪声。传统的加权最小二乘(WLS)作为最通用的状态估计方法,试图最小化测量之间的残差和测量变量的估计,但它无法处理测量误差。为了解决这个问题,基于随机矩阵理论,本文提出了一种在矩阵级中清洁测量误差的数据驱动方法。我们的方法显着降低了测量误差的负效应,并进行了两级状态估计方案与WLS组合。在该方法中,构建隐藏矩阵以建立测量的特征值与其协方差矩阵之间的可逆关系。随机矩阵工具与优化方案组合使用,用于通过缩小协方差矩阵的特征值来清洁测量误差。具有巨大的稳健性和普遍性,我们的方法特别适用于大型互联电网。我们的方法已经使用不同的测试系统进行了数控评估,测量噪声和矩阵尺寸比的多种模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号