首页> 外文期刊>Physical review. B, Condensed Matter And Materals Physics >Magnetic anisotropy of the alkali iridate Na_2IrO_3 at high magnetic fields: Evidence for strong ferromagnetic Kitaev correlations
【24h】

Magnetic anisotropy of the alkali iridate Na_2IrO_3 at high magnetic fields: Evidence for strong ferromagnetic Kitaev correlations

机译:高磁场中碱铱NA_2IRO_3的磁各向异性:强力铁磁性Kitaev相关性的证据

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The magnetic-field response of the Mott-insulating honeycomb iridate Na2IrO3 is investigated using torque magnetometry measurements in magnetic fields up to 60 T. A peak-dip structure is observed in the torque response at magnetic fields corresponding to an energy scale close to the zigzag ordering (approximate to 15 K) temperature. Using exact diagonalization calculations, we show that such a distinctive signature in the torque response constrains the effective spin models for these classes of Kitaev materials to ones with dominant ferromagnetic Kitaev interactions, while alternative models with dominant antiferromagnetic Kitaev interactions are excluded. We further show that, at high magnetic fields, long range spin correlation functions decay rapidly, pointing to a transition to a long-sought-after field-induced quantum spin liquid beyond the peak-dip structure, suggesting this to be a common feature of the family of Kitaev systems. Kitaev systems are thus revealed to be excellent candidates for field-induced quantum spin liquids, similar physics having been suggested in another Kitaev system alpha-RuCl3.
机译:使用磁场中的扭矩磁体测量测量来研究Mott-绝缘蜂窝硅膜硅膜凝析Na2iro3的磁场响应,该磁场测量高达60t。磁场的扭矩响应观察到磁场的扭矩响应,该磁场对应于曲折接近曲折的能量尺度订购(近似为15 k)温度。使用精确的对角化计算,我们表明,扭矩响应中的这种独特的签名将这些类别的Kitaev材料的有效旋转模型限制为具有主导铁磁性Kitaev交互的材料,而具有主导反铁磁性Kitaev相互作用的替代模型被排除在外。我们进一步表明,在高磁场,长距离旋转相关功能衰减快速衰减,指向过渡到超出峰值 - 浸峰结构的长追捧的现场引起的量子旋转液体,表明这是一个共同的特征Kitaev Systems的家庭。因此,Kitaev Systems被认为是用于现场诱导的量子旋转液体的优异候选者,在另一种Kitaev系统α-RuCl3中提出了类似的物理学。

著录项

  • 来源
    《Physical review. B, Condensed Matter And Materals Physics》 |2019年第8期|081101.1-081101.6|共6页
  • 作者单位

    Univ Cambridge Cavendish Lab JJ Thomson Ave Cambridge CB3 0HE England|IIT Dept Phys Kharagpur W Bengal India;

    Tata Inst Fundamental Res Dept Theoret Phys Homi Bhabha Rd Colaba 400005 Mumbai India;

    Los Alamos Natl Lab Los Alamos NM 87545 USA|Huazhong Univ Sci & Technol Natl High Magnet Field Ctr Wuhan 430074 Hubei Peoples R China|Huazhong Univ Sci & Technol Sch Phys Wuhan 430074 Hubei Peoples R China;

    Los Alamos Natl Lab Los Alamos NM 87545 USA|Simon Fraser Univ Dept Phys Burnaby BC V5A 1S6 Canada;

    Los Alamos Natl Lab Los Alamos NM 87545 USA;

    Natl High Magnet Field Lab 1800 E Paul Dirac Dr Tallahassee FL 32310 USA|Chinese Acad Sci Inst Phys POB 603 Beijing 100190 Peoples R China;

    Natl High Magnet Field Lab 1800 E Paul Dirac Dr Tallahassee FL 32310 USA;

    Radboud Univ Nijmegen High Field Magnet Lab HFML EMFL NL-6525 ED Nijmegen Netherlands;

    Univ Kentucky Ctr Adv Mat Lexington KY 40506 USA|Univ Kentucky Dept Phys & Astron Lexington KY 40506 USA|Univ Colorado Dept Phys 390 UCB Boulder CO 80309 USA;

    Univ Toronto Dept Phys Toronto ON M5S 1A7 Canada|Max Planck Inst Phys Komplexer Syst Nothnitzer Str 38 D-01187 Dresden Germany;

    Univ Toronto Dept Phys Toronto ON M5S 1A7 Canada|Canadian Inst Adv Res Quantum Mat Program Toronto ON MSG 1Z8 Canada;

    Tata Inst Fundamental Res Dept Theoret Phys Homi Bhabha Rd Colaba 400005 Mumbai India;

    Univ Cambridge Cavendish Lab JJ Thomson Ave Cambridge CB3 0HE England;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号