首页> 外文期刊>Physical review letters >Learning of Spatiotemporal Patterns in Ising-Spin Neural Networks: Analysis of Storage Capacity by Path Integral Methods
【24h】

Learning of Spatiotemporal Patterns in Ising-Spin Neural Networks: Analysis of Storage Capacity by Path Integral Methods

机译:Ising-Spin神经网络中时空模式的学习:通过路径积分法分析存储容量

获取原文
获取原文并翻译 | 示例

摘要

We encode periodic spatiotemporal patterns in Ising-spin neural networks, using the simple learning rule inspired by the spike-timing-dependent synaptic plasticity. It is then found that periodically oscillating spin neurons successfully reproduce phase differences of the encoded periodic patterns. The storage capacity of this associative memory neural network is enhanced with an adequate level of asymmetry in synapse connections. To understand the properties of these nonequilibrium retrieval states of the neural network, we carry out an analysis based on a path integral method. The relation of a dynamic crosstalk term to time-persistent oscillation of a correlation function well explains the enhancement of the storage capacity in spite of our approximation on nonpersistent terms. We investigate the accuracy of this approximation further by detailed comparison with numerical simulations.
机译:我们使用简单的学习规则,由依赖尖峰时间的突触可塑性启发,在伊辛-自旋神经网络中编码周期性的时空模式。然后发现,周期性振荡的自旋神经元成功地再现了编码的周期性模式的相位差。联想记忆神经网络在突触连接中具有足够的不对称性,从而增强了其存储能力。为了了解神经网络的这些非平衡检索状态的性质,我们基于路径积分法进行了分析。尽管我们对非持久项进行了近似,但动态串扰项与相关函数的时间持久性振荡之间的关系很好地说明了存储容量的提高。通过与数值模拟进行详细比较,我们进一步研究了这种近似的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号