首页> 外文期刊>Pattern recognition letters >Dual-supervised attention network for deep cross-modal hashing
【24h】

Dual-supervised attention network for deep cross-modal hashing

机译:用于深度跨模态哈希的双监督注意力网络

获取原文
获取原文并翻译 | 示例

摘要

Cross-modal hashing has received intensive attention due to its low computation and storage efficiency in cross-modal retrieval task. Most previous cross-modal hashing methods mainly focus on extracting correlated binary codes from the pairwise label, but largely ignore the semantic categories of cross-modal data. On the other hand, human perception exploits category information to connect cross-modal samples. Inspired by this fact, we propose to embed category information into hash codes. More specifically, we introduce semantic prediction loss into our framework to enhance hash codes with category supervision. In addition, there always exists a large gap between features from different modalities (e.g. text and images), leading cross-modal hashing to link irrelevant features for retrieval task. To address this issue, this paper proposes Dual-Supervised Attention Network for Deep Hashing (DSADH) to learn the cross-modal relationship via an elaborately-designed attention mechanism. Our cross-modal network applies cross-modal attention block to efficiently encode rich and relevant features to learn compact hash codes. Extensive experiments on three challenging benchmarks demonstrate that our proposed method significantly improves the retrieval results. (C) 2019 Elsevier B.V. All rights reserved.
机译:由于跨模式哈希在跨模式检索任务中的计算和存储效率低,因此受到了广泛的关注。大多数以前的跨模式散列方法主要着眼于从成对标签中提取相关的二进制代码,但在很大程度上忽略了跨模式数据的语义类别。另一方面,人类感知利用类别信息来连接交叉模式样本。受这一事实的启发,我们建议将类别信息嵌入哈希码中。更具体地说,我们将语义预测损失引入我们的框架中,以通过类别监督来增强哈希码。另外,来自不同模态的特征(例如文本和图像)之间总是存在很大的差距,导致跨模态哈希将不相关的特征链接到检索任务中。为了解决这个问题,本文提出了一种用于深度哈希的双监督注意力网络(DSADH),以通过精心设计的注意力机制来学习交叉模式关系。我们的跨模态网络使用跨模态注意块来有效地编码丰富且相关的特征,以学习紧凑的哈希码。在三个具有挑战性的基准上进行的大量实验表明,我们提出的方法可以显着改善检索结果。 (C)2019 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Pattern recognition letters》 |2019年第12期|333-339|共7页
  • 作者单位

    Chinese Acad Sci Multimedia Lab Shenzhen Inst Adv Technol Xueyuan Ave Shenzhen 1068 Guangdong Peoples R China|Univ Chinese Acad Sci Beijing Peoples R China;

    Shanghai Jiao Tong Univ Shanghai Peoples R China;

    Chinese Acad Sci Multimedia Lab Shenzhen Inst Adv Technol Xueyuan Ave Shenzhen 1068 Guangdong Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Cross-modal retrieval; Deep learning; Hash code;

    机译:跨模式检索;深度学习;哈希码;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号