首页> 外文期刊>Pattern recognition letters >A novel deep learning based framework for the detection and classification of breast cancer using transfer learning
【24h】

A novel deep learning based framework for the detection and classification of breast cancer using transfer learning

机译:一种新颖的基于深度学习的框架,通过转移学习对乳腺癌进行检测和分类

获取原文
获取原文并翻译 | 示例

摘要

Breast cancer is among the leading cause of mortality among women in developing as well as under-developing countries. The detection and classification of breast cancer in the early stages of its development may allow patients to have proper treatment. In this article, we proposed a novel deep learning framework for the detection and classification of breast cancer in breast cytology images using the concept of transfer learning. In general, deep learning architectures are modeled to be problem specific and is performed in isolation. Contrary to classical learning paradigms, which develop and yield in isolation, transfer learning is aimed to utilize the gained knowledge during the solution of one problem into another related problem. In the proposed framework, features from images are extracted using pre-trained CNN architectures, namely, GoogLeNet, Visual Geometry Group Network (VGGNet) and Residual Networks (ResNet), which are fed into a fully connected layer for classification of malignant and benign cells using average pooling classification. To evaluate the performance of the proposed framework, experiments are performed on standard benchmark data sets. It has been observed that the proposed framework outclass all the other deep learning architectures in terms of accuracy in detection and classification of breast tumor in cytology images. (C) 2019 Elsevier B.V. All rights reserved.
机译:在发展中国家和不发达国家中,乳腺癌都是导致妇女死亡的主要原因。在乳腺癌的早期发现和分类可以使患者得到适当的治疗。在本文中,我们提出了一种新颖的深度学习框架,用于使用转移学习的概念对乳腺癌在细胞学图像中进行检测和分类。通常,深度学习架构被建模为特定于问题的并且是独立执行的。与传统的学习范式相反,它孤立地发展和产生,转移学习的目的是在解决一个问题到另一个相关问题的过程中利用所获得的知识。在提出的框架中,使用预先训练的CNN架构从图像中提取特征,这些架构是GoogLeNet,Visual Geometry Group Network(VGGNet)和Residual Networks(ResNet),然后将其馈送到完全连接的层中以对恶性和良性细胞进行分类使用平均池分类。为了评估所提出框架的性能,对标准基准数据集进行了实验。已经观察到,就细胞学图像中乳腺肿瘤的检测和分类的准确性而言,所提出的框架优于所有其他深度学习体系结构。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号