首页> 外文期刊>Pattern recognition letters >Learning skeleton representations for human action recognition
【24h】

Learning skeleton representations for human action recognition

机译:学习人体动作识别的骨架表示

获取原文
获取原文并翻译 | 示例

摘要

Automatic interpretation of human actions gained strong interest among researchers in patter recognition and computer vision because of its wide range of applications, such as in social and home robotics, elderly people health care, surveillance, among others. In this paper, we propose a method for recognition of human actions by analysis of skeleton poses. The method that we propose is based on novel trainable feature extractors, which can learn the representation of prototype skeleton examples and can be employed to recognize skeleton poses of interest. We combine the proposed feature extractors with an approach for classification of pose sequences based on string kernels. We carried out experiments on three benchmark data sets (MIVIA-S, MSRSDA and MHAD) and the results that we achieved are comparable or higher than the ones obtained by other existing methods. A further important contribution of this work is the MIVIA-S dataset, that we collected and made publicly available. (C) 2018 Elsevier B.V. All rights reserved.
机译:由于人类动作的自动解释在社会和家庭机器人,老年人保健,监视等方面的广泛应用,因此在模式识别和计算机视觉方面引起了研究人员的极大兴趣。在本文中,我们提出了一种通过分析骨架姿势来识别人类动作的方法。我们提出的方法基于新颖的可训练特征提取器,它可以学习原型骨架示例的表示,并可以用来识别感兴趣的骨架姿势。我们结合提出的特征提取器和基于字符串核的姿势序列分类方法。我们对三个基准数据集(MIVIA-S,MSRSDA和MHAD)进行了实验,我们获得的结果与其他现有方法所获得的结果相当或更高。这项工作的另一个重要贡献是MIVIA-S数据集,我们已收集该数据集并将其公开使用。 (C)2018 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Pattern recognition letters》 |2019年第2期|23-31|共9页
  • 作者单位

    Univ Salerno, Dept Informat & Elect Engn & Appl Math, Via Giovanni Paolo II, I-84084 Fisciano, SA, Italy;

    Univ Groningen, Johann Bernoulli Inst Math & Comp Sci, Nijenborgh 9, NL-9747 AG Groningen, Netherlands;

    Univ Salerno, Dept Informat & Elect Engn & Appl Math, Via Giovanni Paolo II, I-84084 Fisciano, SA, Italy;

    Univ Groningen, Johann Bernoulli Inst Math & Comp Sci, Nijenborgh 9, NL-9747 AG Groningen, Netherlands;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号