首页> 外文期刊>Pattern recognition letters >A k-means type clustering algorithm for subspace clustering of mixed numeric and categorical datasets
【24h】

A k-means type clustering algorithm for subspace clustering of mixed numeric and categorical datasets

机译:一种k均值类型聚类算法,用于混合数值和分类数据集的子空间聚类

获取原文
获取原文并翻译 | 示例

摘要

Almost all subspace clustering algorithms proposed so far are designed for numeric datasets. In this paper, we present a k-means type clustering algorithm that finds clusters in data subspaces in mixed numeric and categorical datasets. In this method, we compute attributes contribution to different clusters. We propose a new cost function for a k-means type algorithm. One of the advantages of this algorithm is its complexity which is linear with respect to the number of the data points. This algorithm is also useful in describing the cluster formation in terms of attributes contribution to different clusters. The algorithm is tested on various synthetic and real datasets to show its effectiveness. The clustering results are explained by using attributes weights in the clusters. The clustering results are also compared with published results.
机译:到目前为止,几乎所有提出的子空间聚类算法都是为数字数据集设计的。在本文中,我们提出了一种k均值类型聚类算法,该算法在混合数字和分类数据集中的数据子空间中找到聚类。在这种方法中,我们计算属性对不同聚类的贡献。我们为k均值类型算法提出了新的成本函数。该算法的优点之一是其复杂度相对于数据点的数量呈线性关系。该算法还有助于根据属性对不同聚类的贡献来描述聚类的形成。该算法在各种综合和真实数据集上进行了测试,以显示其有效性。通过使用聚类中的属性权重来解释聚类结果。还将聚类结果与已发布的结果进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号