首页> 外文期刊>Pattern recognition letters >Similarity-margin based feature selection for symbolic interval data
【24h】

Similarity-margin based feature selection for symbolic interval data

机译:符号区间数据基于相似度的特征选择

获取原文
获取原文并翻译 | 示例

摘要

In this paper we propose a feature selection method for symbolic interval data based on similarity margin. In this method, classes are parameterized by an interval prototype based on an appropriate learning process. A similarity measure is defined in order to estimate the similarity between the interval feature value and each class prototype. Then, a similarity margin concept has been introduced. The heuristic search is avoided by optimizing an objective function to evaluate the importance (weight) of each interval feature in a similarity margin framework. The experimental results show that the proposed method selects meaningful features for interval data. In particular, the method we propose yields a significant improvement on classification task of three real-world datasets.
机译:本文提出了一种基于相似性余量的符号区间数据特征选择方法。在这种方法中,可以通过间隔原型根据适当的学习过程对类进行参数化。为了估计区间特征值和每个类原型之间的相似性,定义了一个相似性度量。然后,引入了相似余量概念。通过优化目标函数来评估相似性裕度框架中每个区间特征的重要性(权重),可以避免启发式搜索。实验结果表明,该方法为区间数据选择了有意义的特征。特别是,我们提出的方法对三个真实数据集的分类任务产生了重大改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号