首页> 外文期刊>Pattern recognition letters >Multi-label classification with Bayesian network-based chain classifiers
【24h】

Multi-label classification with Bayesian network-based chain classifiers

机译:使用基于贝叶斯网络的链分类器进行多标签分类

获取原文
获取原文并翻译 | 示例

摘要

In multi-label classification the goal is to assign an instance to a set of different classes. This task is normally addressed either by defining a compound class variable with all the possible combinations of labels (label power-set methods) or by building independent classifiers for each class (binary relevance methods). The first approach suffers from high computationally complexity, while the second approach ignores possible dependencies among classes. Chain classifiers have been recently proposed to address these problems, where each classifier in the chain learns and predicts the label of one class given the attributes and all the predictions of the previous classifiers in the chain. In this paper we introduce a method for chaining Bayesian classifiers that combines the strengths of classifier chains and Bayesian networks for multi-label classification. A Bayesian network is induced from data to: (ⅰ) represent the probabilistic dependency relationships between classes, (ⅱ) constrain the number of class variables used in the chain classifier by considering conditional independence conditions, and (ⅲ) reduce the number of possible chain orders. The effects in the Bayesian chain classifier performance of considering different chain orders, training strategies, number of class variables added in the base classifiers, and different base classifiers, are experimentally assessed. In particular, it is shown that a random chain order considering the constraints imposed by a Bayesian network with a simple tree-based structure can have very competitive results in terms of predictive performance and time complexity against related state-of-the-art approaches.
机译:在多标签分类中,目标是将一个实例分配给一组不同的类。通常通过定义带有所有可能的标签组合的复合类变量(标签幂集方法)或通过为每个类构建独立的分类器(二进制相关方法)来解决此任务。第一种方法具有很高的计算复杂度,而第二种方法则忽略了类之间可能的依赖关系。最近提出了链式分类器来解决这些问题,其中链中的每个分类器根据链中先前分类器的属性和所有预测来学习和预测一个类别的标签。在本文中,我们介绍了一种链接贝叶斯分类器的方法,该方法结合了分类器链和贝叶斯网络的优势进行多标签分类。从数据得出贝叶斯网络,可以得出:(ⅰ)表示类之间的概率依赖性关系;(ⅱ)通过考虑条件独立性条件来约束链分类器中使用的类变量的数量;以及(ⅲ)减少可能的链数命令。通过实验评估了考虑不同链阶,训练策略,在基本分类器中添加的类变量数量以及不同的基本分类器对贝叶斯链分类器性能的影响。特别地,示出了考虑到由贝叶斯网络以简单的基于树的结构施加的约束的随机链顺序相对于相关的现有技术方法在预测性能和时间复杂度方面可以具有非常有竞争力的结果。

著录项

  • 来源
    《Pattern recognition letters》 |2014年第1期|14-22|共9页
  • 作者单位

    Institute National de Astrofisica, Optica y Electronica (INAOE), 72840 Puebla, Mexico;

    Departamento de Inteligencia Artificial, Universidad Politecnica de Madrid. Boadilla del Monte, 28660 Madrid, Spain;

    Institute National de Astrofisica, Optica y Electronica (INAOE), 72840 Puebla, Mexico;

    Institute National de Astrofisica, Optica y Electronica (INAOE), 72840 Puebla, Mexico;

    The University of Adelaide, Adelaide. South Australia 5005, Australia;

    Departamento de Inteligencia Artificial, Universidad Politecnica de Madrid. Boadilla del Monte, 28660 Madrid, Spain;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Multi-label classification; Chain classifier; Bayesian networks;

    机译:多标签分类;链分类器;贝叶斯网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号