首页> 外文期刊>Pattern Analysis and Applications >An instance and variable selection approach in pixel-based classification for automatic white blood cells segmentation
【24h】

An instance and variable selection approach in pixel-based classification for automatic white blood cells segmentation

机译:基于像素的自动白细胞分类中的实例和可变选择方法

获取原文
获取原文并翻译 | 示例

摘要

Instance and variable selection involve identifying a subset of instances and variables such that the learning process will use only this subset with better performances and lower cost. Due to the huge amount of data available in many fields, data reduction is considered as an NP-hard problem. In this paper, we present a simultaneous instance and variable selection approach based on the Random Forest-RI ensemble methods in the aim to discard noisy and useless information from the original data set. We proposed a selection principle based on two concepts: the ensemble margin and the importance variable measure of Random Forest-RI. Experiments were conducted on cytological images for the automatic segmentation and recognition of white blood cells WBC (nucleus and cytoplasm). Moreover, in order to explore the performance of our proposed approach, experiments were carried out on standardized datasets from UCI and ASU repository, and the obtained results of the instances and variable selection by the Random Forest classifier are very encouraging.
机译:实例和变量选择涉及识别实例的子集和变量,使得学习过程仅使用具有更好的性能和更低的成本。由于许多字段中可用的大量数据,数据减少被视为NP难题。在本文中,我们提出了一种基于随机森林-RI集合方法的同时实例和可变选择方法,该方法旨在从原始数据集中丢弃噪声和无用信息。我们提出了基于两个概念的选择原则:集合保证金和随机森林RI的重要性可变度量。在细胞学图像上进行实验,用于自动分割和识别白细胞WBC(核和细胞质)。此外,为了探讨我们所提出的方法的性能,在UCI和ASU存储库的标准化数据集上执行实验,并且随机林类分类器的实例和变量选择的所获得的结果非常令人鼓舞。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号